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Abstract

In seismology, earthquakes can be used to explore the inner structure of our planet.

Similar to medical applications of high-energy electromagnetic radiation, seismologists

use seismic waves traveling through the body of the Earth to image its interior. These

tomographic images show distributions of seismic velocities. Such velocities themselves

depend upon material composition and physical properties such as temperature and

pressure. Therefore, interpreting these velocity distributions is important to understand

the Earth’s structure and dynamics.

An important goal in global seismic tomography is to improve the resolution of these

velocity models. A promising approach involves the full numerical forward modeling

of seismic waves. Most tomographic models of the Earth have not yet made use of it;

instead, they almost always relied on ray theory, which simplifies the formulation of both

forward and inverse problems. But we have to be aware that ray theory is an infinite-

frequency approximation. In practice, this means that it is valid only provided that the

wavelength of considered seismic phases is short compared to the spatial extent of Earth’s

heterogeneities. Obviously, this limits the resolution power, and such approaches fail

to detect very small-scale heterogeneities. Especially for low-frequency surface waves,

one should ultimately formulate the inverse problem via more accurate descriptions of

wave propagation. Finite-frequency theory is such a description, in that it considers the

single scattering of seismic waves at small anomalies. Taking this into account, finite-

frequency theory replaces rays with complicated kernel functions covering large regions,

where seismic measurements are sensitive to heterogeneity.

The first part of my Ph.D. work consisted of computing such sensitivity functions

relating seismic phase-delay measurements of surface waves to two-dimensional phase-

velocity structures. I combined the computational benefits of a simplified description

of forward surface-wave propagation and a time-reversal, adjoint method to construct,

by a fully numerical procedure, sensitivity kernels employed in the tomographic inverse

problem. In the second part, the effects of such numerical finite-frequency sensitivity

kernels upon tomographic imaging were investigated. I compared the finite-frequency
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and ray-theoretical approaches for both the forward and the inverse problem in global

surface-wave tomography. The benefits of finite-frequency theory on tomographic images

is demonstrated by a controlled-environment exercise for surface-wave phase-velocity in-

versions. The third part of this work applies numerical, two-dimensional finite-frequency

kernels to derive a high-resolution dataset of dispersion curves for a regional study.

With focus on Europe and the Mediterranean region, such datasets are inverted for the

three-dimensional, seismic shear-velocity structure of the upper mantle. Conducting an

exhaustive search over all possible depth profiles for both, ray-theoretical- and finite-

frequency-derived dispersion datasets, the most probable seismic shear-velocity models

are found, which were compared to independent studies. Considering the reliability of

our derived models, further efforts in improving seismic measurements together with

finite-frequency descriptions in inverse approaches will lead to a better knowledge of

Earth’s structure and processes.
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Résumé

En sismologie, les tremblements de terre sont étudiés pour améliorer la connaissance

de la structure interne de notre planète. A l’instar de la tomographie médicale, les

sismologues étudient les ondes sismiques se propageant à travers la Terre pour en imager

l’intérieur. Ces images tomographiques révèlent des distributions de vitesse sismique

qui dépendent de la composition minéralogique et des propriétés physiques du sous-sol

comme la température et la pression. L’interprétation de ces distributions de vitesse

est déterminante pour une meilleure compréhension de la structure de la Terre et de

ses processus géodynamiques. Cependant, ces images tomographiques globales restent

aujourd’hui encore approximatives.

Un objectif important de la tomographie sismique réside dans l’amélioration de la

résolution des modèles de vitesse. Une approche prometteuse implique l’utilisation de

modélisations numériques de la propagation des ondes sismiques. Cependant, à ce jour,

la plupart des modèles tomographiques globaux ont employé la théorie des rais qui sim-

plifie la description de la propagation des ondes dans les problèmes direct et inverse des

études tomographiques. La théorie des rais est une approximation des fréquences in-

finies. En pratique, elle implique que la longueur d’onde des phases sismiques considérées

doit être plus petite que les hétérogénéités que l’on cherche à imager. Cette approxima-

tion limite évidemment le potentiel de résolution de cette approche pour détecter des

perturbations de vitesse de petite taille, notamment lors de l’utilisation des ondes de sur-

face basse-fréquence. Pour ces dernières, une description plus précise de la propagation

des ondes, comme celle énoncée par la théorie des fréquences finies, est nécessaire dans

les approches d’imagerie inverse. En effet, la théorie des fréquences finies, qui prend en

compte la dispersion des ondes sismiques aux petites hétérogénéités, transforme des rais

en noyaux complexes au niveau lequel les mesures sismiques sont sensibles.

La première partie de ma thèse consistait à calculer ces noyaux de sensibilité reliant les

mesures d’anomalies des phases sismiques aux vitesses de phases des ondes de surface.

Pour cela, les avantages numériques d’une description simplifiée de la propagation des

ondes de surface ont été combinés à une méthode adjointe.
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Durant la deuxième partie de ma thèse, j’ai examiné les effets de ces noyaux de sen-

sibilité des fréquences finies sur l’imagerie de tomographie globale. Les deux approches

basées sur la théorie des rais et celle des fréquences finies ont été comparées dans le

cadre des problèmes direct et inverse. La supériorité de la théorie des fréquences finies

a été démontrée par des tests synthétiques pour les inversions de vitesse de phase des

ondes de surface.

Dans la troisième partie de ma thèse, j’ai utilisé les noyaux des fréquences finies

numériques 2D pour dériver un jeu de courbes de dispersion à l’échelle régionale. Pour

la région Euro-Méditerranéenne, ces courbes de dispersion ont été inversées pour obtenir

le modèle 3D de vitesse de cisaillement du manteau supérieur. Pour chaque courbe de

dispersion, dérivée par la théorie des rais et par celle des fréquences finies, une recherche

exhaustive des modèles en profondeur a été effectuée pour déterminer les modèles de

vitesse de cisaillement les plus probables. La comparaison de ces modèles avec ceux

d’études indépendantes suggère que l’approche des fréquences finies est plus cohérente.

Néanmoins, l’incertitude dans les modèles dérivés est trop importante pour conclure

définitivement; seule une amélioration des mesures sismiques utilisées dans mon étude

permettrait de démontrer, de façon probante, l’efficacité de l’approche des fréquences

finies.
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1 Introduction

Natural disasters have had and will always have a major impact on human society.

Earthquakes can ravage large areas and bring suffering and grief to many people living

in such regions. Why and how do earthquakes occur, and which physical laws govern

their behavior? We know a lot more today than only a hundred years ago. Still, there are

many unanswered questions and more work will be needed to better understand these

phenomena. My thesis can only point out a very small aspect of this area of research:

namely, the problem of imaging heterogeneous structures within the Earth. Knowledge

of Earth’s heterogeneity is tremendously important to accurately locate earthquakes,

to discriminate nuclear explosions, or to understand physical processes that take place

within the Earth.

The tomographic method for seismic imaging began to be developed about three

decades ago due to the pioneering work of Keiti Aki and coworkers A. Christofferson and

E. Husebye (Aki et al. 1977), as well as Adam Dziewonski and coworkers B. Hager and

R. O’Connell (Dziewonski et al. 1977). Tomography turned out to be very successful in

revealing relatively detailed structures within the Earth, giving a present-day snapshot

of mantle dynamics, important to understand plate tectonics and its surface expression.

Tomographic models also started to play a crucial role in discriminating and validating

nuclear explosions for the survey of the nuclear-test-ban treaty.

The main goal of this thesis is to evaluate the performance of different theoretical

descriptions of seismic wave propagation in the tomographic imaging process. I exam-

ine, in particular, the potential benefits of finite-frequency theory versus ray theory.

Ray theory1 is an infinite-frequency approximation, valid under the condition that the

scalelength of heterogeneities be large compared to the wavelength of the propagating

wave. In seismology, until recently, almost all tomographic images rely on ray theory,

but especially for long-period surface waves the condition of ray-theory validity is not

necessarily fulfilled.

1 Ray theory is a concept from optics, were it is very successful in describing and explaining various
natural phenomena, such as e.g. the occurrence of rainbows (Descartes 1637). But even simple
questions, like e.g. why the sky is blue, must be explained by scattering effects (Rayleigh 1899).
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1 Introduction

Finite-frequency tomography accounts for first-order scattering (single scattering) of

seismic waves, i.e. waves that are refracted and reflected at small-scale heterogeneities in

the Earth. Scattered seismic waves arriving at a measurement station interfere with the

direct arrivals of seismic phases, perturbing the measurement in a complicated fashion

and making it sensitive, in principle, to elastic heterogeneity at any location within the

Earth. Perhaps the first question I asked myself at the beginning of my doctoral studies

was whether finite-frequency methods can improve the resolution of tomography2.

Membrane waves and tomographic resolution

How do we identify, in the single-scattering formulation, the sensitivity kernels relating

a small perturbation in the measurement to a small variation of the underlying seis-

mic structure? A comprehensive work introducing this issue was conducted by Henk

Marquering, together with F. Dahlen and G. Nolet (Marquering et al. 1999), intro-

ducing the “banana-doughnut” paradox. Marquering et al. (1999) clearly showed that

the sensitivity of travel-time measurements to Earth structure is actually zero on the

ray-theory path, and has its maximum off this ray.

The next challenge resides in implementing the actual computation of such sensitivity

kernels. Theoretically, there is one main assumption that is usually made to find analyti-

cal expressions for propagating seismic waves, which is the far-field approximation. This

approach leads to artifacts, as the earthquake source and the measurement receiver lo-

cation become mathematical singularities. The fully numerical calculation of sensitivity

kernels can avoid shortcomings like this, provided that efficient and accurate algorithms

exist, to model the propagation of seismic waves. For example Jeroen Tromp and his

Ph.D. students C. Tape and Q. Liu use the adjoint method to numerically calculate the

2 The difference between ray and finite-frequency theory is difficult to describe without proper use
of mathematical formulations (see e.g. Dahlen et al. 2000 and Nolet et al. 2005 for a simplified
formulation). Maybe ray theory is a bit like sightseeing with a group of people in a town, but using
only the metro. All you will glimpse of the town is the dark, narrow tube of the tunnel in front of
you (with a few advertisements that are hanged out at the tunnel’s wall). Your view will be very
limited while traveling from your departure to the destination location.

With finite-frequency theory, you would take a bus with a comfortable panorama deck to move
from point A to point B. You could look everywhere around. Still, we’re going to simplify the
theory, basically allowing you only one stop in between the departure and destination points. You
could choose by yourself where this intermediate stop would be. Then, once you were arriving at
the destination, you could exchange your experience with the others of the group and might have a
pretty good impression of the city.
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sensitivity kernels in a very efficient way (Tromp et al., 2005). Still, as a result of the

forward simulation of seismic wave propagation, the calculation of sensitivity kernels is

computationally very expensive (Appendix A investigates this issue for future applica-

tions). For seismic surface waves, the forward simulation can be simplified when one

considers only surface waves in a narrow frequency-band. This simplified description

was introduced as the “membrane surface wave method” by Toshiro Tanimoto (Tani-

moto 1990). In this thesis, I use this method extensively to calculate the sensitivity of

a phase-delay measurement to a local perturbation in phase-velocity3.

The inverse problem in seismology deals with mapping seismic structures, and ulti-

mately the purpose of employing finite-frequency sensitivity kernels is to improve the

resolution of tomography. In this sense, I quantify in chapter 2 the performance of the

membrane wave method applied to the seismic inverse approach of imaging regional

phase-velocity heterogeneity; I first describe the theoretical and numerical background

to calculate the corresponding sensitivity kernels for surface-wave phase-delay measure-

ments, then show an application to real data.

Chapter 3 investigates in a more detailed way the resolution potential of this method,

using the membrane wave model to generate synthetic measurements; the resolution

limit of a ray-theoretical approach can so be compared to a finite-frequency one. In

this context, I also address the general problem of poor data coverage and measurement

errors in the seismic inverse problem4.

3 In general, the measurements of phase-delay apply narrow frequency-bandpass filters to recorded
seismograms in order to separate distinct surface waves periods from each other (see e.g. Ekström
et al. 1997). This simplifies the consecutive separation of fundamental- and over-tone surface-wave
modes. They lead to global phase-delay databases, which can be inverted for local phase-velocities.
The derived phase-velocity models are a compact way of representing these databases, and can be
used in a second step to derive the underlying three-dimensional Earth structures (Trampert &
Woodhouse 2001).

4 Panza et al. (2007) phrase it in a very nice way: “Seismic tomography is a technique to image the
Earth interior with waves generated by earthquakes. The method is comparable to that applied in
medical tomography although it is much more complicated because: (1) apart from a few nuclear
tests, it is not in our power to locate or time the natural sources of seismic waves (earthquakes);
(2) apart from a few ocean-bottom seismographs (OBS), the sensors are located on land and their
distribution is discrete; (3) in seismology the ray-path is usually not straight (Nolet 1987). As
a consequence of (1) and (2), some areas are sampled by wave paths that mostly go along some
preferred direction, while others are not sampled, with obvious consequences of the resolving power
of the data. (...)”
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1 Introduction

Mediterranean tomography

Chapter 4 is devoted to an application of the membrane wave method to a regional,

three-dimensional seismological problem. The two theoretical approaches of ray and

finite-frequency theory are compared in one focus area, well covered by the data: Eu-

rope and the Mediterranean basin. There are various reasons to focus on this region:

seismological reference models help to accurately locate earthquake sources and lead also

to more accurate descriptions of seismic source mechanisms. They help discriminating

natural sources of ground motion from man-made ones, an important step to provide ac-

curate seismic hazard maps without contamination by falsely identified sources (Jimenez

et al. 2003). An additional goal is to improve the monitoring of nuclear explosions for

the comprehensive nuclear-test-ban treaty (CTBT). More accurate global references but

also good regional models are needed if one wants to achieve this goal (Pasyanos et al.

2004).

The European-Mediterranean region is highly complex due to the interactions between

the African, Eurasian and Arabian plates. Throughout the past few million of years,

subduction zones, alpine roots and extensional basins were formed (McKenzie 1972). A

better knowledge of these complex geological features helps constraining geodynamical

modeling and ultimately understand mantle dynamics. In this context, tomographic

studies are the most successful tools to provide the necessary boundary conditions.

Geodynamical processes take place on all scales, from large-scale mantle flows to micro-

scale fluid migrations. Again, there is a need for higher resolution in tomographic

models, and, equally important, for estimates of the uncertainties associated with the

same models.

How can surface wave tomography help us to find three-dimensional, heterogeneous

structures within the Earth? Seismic surface waves are dispersive, i.e. their phase veloc-

ities depend on their wavelengths. This is a consequence of the Earth’s heterogeneity.

Especially in the crust and upper mantle, surface waves are strongly sensitive to pertur-

bations in the velocity of shear waves, and tomographers can then use observations of

surface waves to map shear-wave velocity. In chapter 4, I use a two-step procedure to find

three-dimensional Earth structure from surface-wave data. Phase-anomaly measure-

ments are first used to map the phase velocity as a function of location. Phase-velocity

maps are found for every observed surface-wave period, spanning the whole Earth’s sur-

face; thus, at each location the specific surface-wave dispersion curve is determined. The

4



second and final step consists of finding the appropriate seismic velocity-structure as a

function of depth, at each surface location, in order to accurately explain the dispersion

curve for that particular location (e.g. Panza et al. 2007).

My final goal in chapter 4 is to investigate the effects of different theoretical as-

sumptions on the inversions of seismic depth profiles. I therefore employ either ray or

finite-frequency theory in order to derive phase-velocity maps at the first step of the pro-

cedures described above. The second step is then applied to both resulting databases of

surface-wave dispersion. I make use of a high-resolution parameterization over Europe

and the Mediterranean region to derive the three-dimensional seismic models for both

theoretical approaches and compare the seismic structures revealed by them with those

predicted by independent studies of the region’s dynamics.
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2 Membrane waves

Summary

We implement the wave equation on a spherical membrane, with a

finite-difference algorithm that accounts for finite-frequency effects in

the smooth-Earth approximation, and use the resulting “membrane

waves” as an analogue for surface wave propagation in the Earth. In

this formulation, we derive fully numerical 2-D sensitivity kernels for

phase anomaly measurements, and employ them in a preliminary to-

mographic application. To speed up the computation of kernels, so

that it is practical to formulate the inverse problem also with respect

to a laterally heterogeneous starting model, we calculate them via the

adjoint method, based on back-propagation, and parallelize our soft-

ware on a Linux cluster. Our method is a step forward from ray theory,

as it surpasses the inherent infinite-frequency approximation. It differs

from analytical Born theory in that it does not involve a far-field ap-

proximation, and accounts, in principle, for nonlinear effects like mul-

tiple scattering and wavefront healing. It is much cheaper than the

more accurate, fully 3-D numerical solution of the Earth’s equations

of motion, which has not yet been applied to large-scale tomography.

Our tomographic results and trade-off analysis are compatible with

those found in the ray- and analytical-Born-theory approaches.

2.1 Introduction

One of the important challenges in seismology is to enhance the tomographic resolu-

tion of the Earth’s interior. A way to achieve this goal is by elaborating more accurate

theoretical descriptions of seismic wave propagation and using them to formulate the

tomographic inverse problem. The Born approximation (single-scattering theory) rep-

resents a possibly significant improvement with respect to simple ray theory; for some

time now it has been known to be valid at least for weak scattering in the Earth (Hud-

son & Heritage 1981; Wu & Aki 1985). On the basis of the Born approximation, the

“banana-doughnut” paradox, or the prediction that the sensitivity of seismic travel time

10
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observations be maximum away from the ray-theoretical path, was pointed out most

clearly by Marquering et al. (1999) (but see also Kennett 1972; Woodhouse & Girnius

1982; Snieder 1987; Snieder & Nolet 1987; Li & Tanimoto 1993; Li & Romanowicz

1995); numerous studies have been made to understand the nature of this phenomenon

(Dahlen et al. 2000; Hung et al. 2000; Zhao et al. 2000; Spetzler & Snieder 2001;

Spetzler et al. 2002; Baig et al. 2003; Tanimoto 2003; Baig & Dahlen 2004; Tromp et

al. 2005; de Hoop et al. 2005).

The Born approximation, while representing an improvement with respect to simple

ray theory, cannot reproduce nonlinear effects that take place in reality (Wielandt 1987;

Nolet & Dahlen 2000; Hung et al. 2001; Baig et al. 2003). In addition, implementations

of Born theory found in the literature are typically based on far-field expressions of the

wavefield, giving rise to singularities in the computed Fréchet derivatives (sensitivity

kernels) (Favier et al. 2004). In practice, the forward problem is formulated under the

assumption that scattering occurs only at distances from source and receiver much larger

than the wavelength, but its solution is then used to compute the values of sensitivity

kernels in the vicinity of source and receiver as well, where the kernels are actually

singular. This singularity appears to be integrable (Friederich 1999, Appendix E), but

it remains unclear to what extent these asymptotic kernels are valid near the source and

receiver. Capdeville (2005) proposed an efficient way to overcome this problem in the

computation of sensitivity kernels, combining adjoint methods (Tromp et al. 2005 and

references therein) and normal mode summation, though his approach has not yet been

applied in practice to the inversion of real seismic data.

Direct numerical integration of the equations of motion is another way to avoid the

far-field approximation, and simulate, at least to some extent, the nonlinear phenomena

mentioned above. Computational power has grown tremendously in recent years thanks

to a combined improvement in processor performance and in size of multi-processors

clusters (Bunge & Tromp 2003; Boschi et al. 2007); over the last decade, the average

growth-per-year in the computational performance of supercomputers has slightly ex-

ceeded Moore’s law, which predicts a factor of 2 in 18 months (Strohmaier et al. 2005).

Seismologists with access to large parallel computers are now able to calculate seismic

waves propagating through a three-dimensional, complex medium closely resembling

the Earth. Nevertheless, such simulations can take quite a long time even for a single

earthquake and on large cluster systems; for example, Tsuboi et al.’s (2002) simulation

of the Denali earthquake in a very realistic Earth model took about 15 hours on one of
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2 Membrane waves

the fastest supercomputers in the world. It is therefore too time-consuming to perform

the large number of full numerical integrations required to set up an inverse problem

numerically unless one simplifies the problem (e.g., Tape et al. 2007).

Here we explain how the 3-D problem of fundamental-mode surface wave propagation

is represented by a 2-D, zero-thickness membrane analogue. We then use the membrane

wave analogue to compute sensitivity functions relating surface wave phase measure-

ments to lateral anomalies in the phase velocity of surface waves. This is a notoriously

time-consuming endeavour, but we reduce its cost through the application of an adjoint-

method approach (e.g., Tarantola 1984) similar to that of Tromp et al. (2005). We apply

the sensitivity functions in an inversion of real data to derive phase-velocity maps of

the Earth, which we compare in the last part of this work with those obtained from

ray-theory and analytical Born-theory tomography (e.g., Spetzler et al. 2002; Boschi

2006).

2.2 The forward problem: membrane waves

Membrane waves as an analogue for surface waves were introduced by Tanimoto (1990),

to investigate locally the strong effects of lateral heterogeneity on short-period surface

waves (10 and 20 s). We follow the same approach to derive a numerical model for

the propagation of intermediate-period surface waves at the global scale, which requires

special spherical grids and numerical techniques (e.g., Sword et al. 1986). In the interest

of simplicity, we give only a detailed theoretical treatment of the Love-wave case below.

Working with a Rayleigh wave Ansatz leads to an algebraically more complicated, but

qualitatively analogous derivation (Tanimoto 1990; Tromp & Dahlen 1993).

2.2.1 Theory

Given the equation of motion (Aki & Richards 2002)

ρü = ∇ · τ , (2.1)

with ρ denoting density, u displacement, τ stress, and accompanied by initial conditions

accounting for the seismic source, we Fourier-transform it and replace u with the Love
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wave ansatz (Tanimoto 1990)

uL = W (r)(−r̂×∇1)s(ϑ, ϕ), (2.2)

with W (r) depending only upon depth, and r̂ denoting the unit vector, ∇1 the surface

gradient (e.g. Dahlen & Tromp 1998) and s(ϑ, ϕ) a scalar “potential” at colatitude

ϑ and longitude ϕ. It follows that for an isotropic stress-strain relation and in the

smooth-Earth approximation, s satisfies

∇2
1s+

ω2

c2(ϑ, ϕ;ω)
s = 0, (2.3)

valid at each frequency ω and corresponding phase velocity c (Tanimoto 1990; Tromp &

Dahlen 1993; Yoshizawa & Kennett 2005). We solve eq. (2.3) numerically in the time

domain, with a prescribed initial displacement and source-time function. Notice that we

have implicitly assumed the medium to be isotropic, with smooth lateral variations of

the shear modulus, so that its gradient can be neglected; in practice, we are restricting

ourselves to a similar approximation as those implicit in perturbation (Born) theories

based upon ray theory (e.g., Dahlen et al. 2000; Spetzler et al. 2002).

In order for an analytical solution to be available in the homogeneous Earth case, we

prescribe a forcing term

f(ϑ, ϕ) = g(∆)h(t), (2.4)

consisting of an initial displacement

g(∆) =
e−∆2/2µ2

µ2
, (2.5)

with ∆(ϑ, ϕ) ∈ [0, π] denoting arc-distance from the source, and a source-time function

h(t) =
−t
σ2

e−t
2/2σ2

√
2πσ

(2.6)

(Tape 2003, eq. 3.31). Here σ and µ act as source parameters, governing the character-

istic frequency content of the source. To avoid the introduction of absorbing boundary

conditions and to allow for multi-orbit surface wave propagation, the membrane spans

the whole globe.
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2.2.2 Meshing the Earth’s surface

It is impossible to evenly distribute more than 20 points on the surface of the sphere,

a distribution of points describing a platonic dodecahedron. Modeling on the sphere

at regional scalelengths requires thousands of points, and thus the grids will have at

least some undesired irregularities. Spherical geodesic grids of triangular faces, first

introduced in the context of meteorological flow modeling (Williamson 1968; Sadourny

et al. 1968), are one approach to the nontrivial problem of uniformly discretizing the

Earth’s surface (Cui & Freeden 1997; Saff & Kuijlaars 1997).

In practice, the sphere is first discretized by a platonic solid, i.e. a regular polyhedron

consisting of identical cell faces. We find the initial triangular mesh combining the

vertices of a dodecahedron and an icosahedron (Tape 2003), also known as a truncated

icosahedron or a buckyball. We then refine the grid iteratively, using the midpoints of the

three sides of each spherical triangle to divide it into four new smaller triangles, forming

the next finer grid. This method will be referred as dyadic refinement (Baumgardner &

Frederickson 1985). The corresponding hexagonal/pentagonal (in the following loosely

referred to as hexagonal) grid is constructed from the triangular grid. The corner of each

hexagonal or pentagonal face is found by calculating the central point of each spherical

triangle from the corresponding triangular grid. Vertices of the triangular grids then

coincide with the cell centers of the hexagonal grids.

As we shall show in the next section, s is evaluated at the vertices of the triangular

grid, while the computation of its Laplacian involves the areas of the hexagonal grid cells,

so that the properties of both grids are relevant to our implementation. Comparisons

in Table 2.1 show that our hexagonal grid has a more uniform distribution than others

based on the icosahedron as the initial triangular grid (e.g. Wang & Dahlen 1995; Heikes

& Randall 1995a). A further improvement of the distribution could still lead to an even

more accurate numerical solution; in the next section we show that our hexagonal grid

is sufficiently good to provide a valuable basis for the numerical computations.

2.2.3 Finite-difference scheme

Both global (e.g., spectral) and local (e.g, finite-difference) numerical methods have

been applied to meteorological problems associated with spherical geodesic grids (see

Stuhne & Peltier 1996; Randall et al. 2002). Inspired by the studies of Heikes & Randall

(1995a,b), we use a simple finite-difference scheme to compute the Laplacian, which is

14



2.2 The forward problem: membrane waves

Table 2.1: Properties of spherical grids. Comparison between spherical grids based
on icosahedral (ico) and icosahedral-dodecahedral (ico-dod) initial platonic
solids. The membrane wave calculations use the hexagonal grid based on the
second combination of two platonic solids (ico-dod). Values for the icosahe-
dral case are taken from the twisted grid used by Heikes & Randall (1995a).

refinement level ratio of cell area ratio of cell distance
Amin/Amax dmin/dmax

0 ico 0.885 0.881
ico-dod 0.941 0.894

1 ico 0.774 0.848
ico-dod 0.914 0.861

2 ico 0.763 0.840
ico-dod 0.907 0.852

3 ico 0.742 0.838
ico-dod 0.878 0.850

4 ico 0.736 0.837
ico-dod 0.870 0.849

5 ico 0.733 0.837
ico-dod 0.868 0.849

6 ico ..∗ ..∗

ico-dod 0.868 0.849

* no information

required to solve eq. (2.3) for the wavefield s. The Laplacian of a function α(ϑ, ϕ) at a

cell center point Pi on the hexagonal grid described above is approximated by

∇2α
∣∣∣
Pi

≈ 1

Ai

N∑
n=1

ln
Ln

(αn − αi), (2.7)

where N denotes the number of edges of the i-th cell (5 or 6), ln is the length of its n-th

edge and Ln the distance between the centers of the i-th cell and of its neighbor, which

shares its n-th edge. αi denotes the value of α at Pi and αn the value of α at the centers

of the neighboring cells. Ai is the area of the spherical polygon identifying the cell on

the sphere’s surface. All these parameters are computed numerically at the outset.

Equation (2.7) shows that the calculation of the Laplacian for a given cell requires

only information on the neighboring cells. This is why this scheme is said to be a “local”
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method, in contrast to other “global” numerical implementations like the spectral meth-

ods mentioned above. The advantage of local methods is that they can be parallelized

in a very efficient way.

We validate eq. (2.7) using spherical harmonic functions Ylm (Dahlen & Tromp 1998,

eq. B.11), which are eigenfunctions of the Laplacian operator,

∇2Ylm(ϑ, ϕ) = −l(l + 1)Ylm(ϑ, ϕ). (2.8)

Hence, differences between the numerically evaluated Laplacian of Ylm, and its analytical

values, are readily calculated at the location of each cell. We find that differences are

not uniformly distributed on the spherical grid; in fact, although errors become very

small as soon as we have a sufficiently fine grid, there exist certain cells where, above a

certain level, further refinements of the mesh do not reduce the error significantly.

We explain this effect introducing “grid distortion” as the distance between the mid-

point of the segment connecting two neighboring cell centers, and the midpoint of the

corresponding cell edge, divided by the cell edge length (Heikes & Randall 1995b, section

2). At each cell, we average grid distortion over all its neighbors, and plot the result

in Fig. 2.1a. When the plotted value is zero, the cell is symmetric and the grid is not

distorted at the corresponding location. We find the Laplacian to be nearly second-order

accurate at most gridpoints (see also Heikes & Randall 1995b). A few cells exist with

a particularly high distortion (∼2% or less). Table 2.1 confirms, nevertheless, that our

grid is more uniform (hence, less distorted) than alternatives found in current literature.

In a numerical simulation relying on eq. (2.7), cells with high distortion will generate

non-physical scattered waves. We test the accuracy of the numerical scheme comparing

numerical and analytical solutions found for a constant-velocity membrane. Using the

source described by equations (2.5) and (2.6), the following analytical solution was

determined for example by Tape (2003, equation 3.34):

s(ϑ, ϕ, t) = c2

∞∑
l=0

(l +
1

2
)Il(µ)cos(ωlt)e

−ω2
l σ

2/2Pl(cos(ϑ)), (2.9)

where

ωl =
c
√
l(l + 1)

a
(2.10)
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2.2 The forward problem: membrane waves

Figure 2.1: Properties of the hexagonal grid. (a) Distortion measured by the midpoint
ratio of distance between cell centers and cell edges to corresponding cell edge
length (Heikes & Randall 1995b). (b) Accuracy of Laplacian for a spherical
harmonic function (l = 6, m = 1). Differences between numerical and
analytical values are normalized to the maximum value of the analytical
Laplacian. View from North Pole down projected onto the equatorial plane.

(a) (b)

with a the radius of the sphere, and the integrals

Il(µ) =

∫ π

0

Pl(cos(θ))
e−θ

2/2µ2

µ2
sin(θ)dθ (2.11)

are calculated numerically with the Legendre polynomials Pl of angular degree l.

Fig. 2.2 shows a snapshot of the scalar potential solution to the wave equation (2.3)

derived numerically over the whole sphere. Fig. 2.3 shows the resulting scalar potential

solutions and phaseshifts between the analytical and numerical solutions for Love waves

at 150 s period. Phaseshifts are shown for filtered and unfiltered solutions; the simple

source mechanism described by equations (2.5) and (2.6) excites a wider range of fre-

quencies, which have to be filtered out in order to isolate the frequency of interest. We

examine this in more detail in section 2.3.3.

We find that differences between the analytical and numerical solutions are small

enough that the numerical algorithm can be considered valid, and can be applied to

evaluate the effects of small lateral heterogeneities, or formulate a tomographic inverse
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Figure 2.2: Snapshot of wave propagation on the spherical membrane for a source at the
North Pole. Wavefield s is plotted on a spherical-triangular grid with 7682
vertices.

problem. We conduct numerical integrations on the grid defined by 6 successive dyadic

refinements, yielding 122,882 hexagonal or pentagonal cells. On the basis of Fig. 2.3,

we consider this mesh a good compromise between the cost of further refinements,

and inaccuracies introduced by making the grid coarser. The grid spacing, or average

distance between the centers of neighboring cells, is ∼70 km, corresponding to about 10

grid points per dominant wavelength for the reference case of 150 s period waves.

A final remark concerns the stability of our numerical scheme. If the timestep dt

becomes too small, the numerical errors can grow exponentially and become unstable

within the time window of the simulation. On the other hand, dt must satisfy

dt ≤ dx/R, (2.12)

where dx is the average distance between grid nodes, and the threshold value R has to

be determined as described, e.g., by Moczo et al. (2004). In the case of our spherical
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Figure 2.3: Accuracy of numerical membrane waves. (a) Analytically (dashed) and nu-
merically (solid) calculated membrane wave s, generated from a source at
(0◦N, 0◦E) and recorded at (0◦N, 90◦E). (b) Phase-shift between the analyti-
cal and numerical, filtered (solid) and unfiltered (dashed) solutions shown in
(a), for different levels of grid refinements. Filtering is discussed in section
2.3.3.

(a) (b)

grid, Tape (2003) found empirically

dt ≈ dx

c̄
√

2
, (2.13)

where c̄ is the average phase velocity of the model. Simulations with a timestep smaller

than (2.13) will require a longer computation time without increasing the precision.

The timestep also limits the sampling rate of modeled waves; in section 2.4, we will

apply a quadratic interpolation between sampled times to cross-correlate accurately our

computed traces (e.g., Smith & Serra 1987; Press et al. 1992).

2.2.4 Computational considerations

The main advantage of collapsing a three-dimensional problem to two dimensions is

an order-of-magnitude gain in the speed of simulations. Our software is parallelized to

optimize its performance on a Linux cluster. We use the implementation MPICH of the

standard message passing interface on a 16-processor cluster. Software performance on
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parallel computers depends on the amount of communication between different processes

needed during a simulation. If no communication were needed, the calculation time

would decrease linearly as a function of the number of available processors. The more

communication required, the slower the performance will get, and, above a certain

number of processors, no further gain in speed will be possible.

Table 2.2a shows how the performance of our implementation scales with respect to

the number of processors. It can be seen that if the latter is doubled, runtime decreases

by a factor of ∼2. Above 8 processors, the gain in speed falls off. Notice that in principle

we should expect the simulation time to increase by a factor 8 for a next finer grid, as

there will be 4 times more grid cells due to the dyadic refinement, and the number of

timesteps will double due to a halving of the spacestep. Table 2.2b shows the runtimes

for single simulations conducted with different grid spacings employing 16 processors

in parallel. A single simulation, running in parallel on clusters larger than ours, will

nevertheless be punished by the need of data communication between the processes.

Since one simulation can be completed within a minute on a single processor (for grid

spacings around 70 km), a large cluster system has the obvious advantage that each

processor can run a separate simulation.

A single simulation of surface wave propagation via the full numerical integration

of the equation of motion in 3-D (e.g., spectral-element methods) would take minutes

even on large cluster systems, and can be carried out in seconds by our approximate,

2-D membrane wave algorithm on a small cluster. While analytical methods like that

of Spetzler et al. (2002) are only proved to perform well in a spherical-background-

Earth scenario, we show below that ours, through an application of the adjoint method

(Tarantola 1984), can provide a full kernel library in a heterogeneous reference model

as well, in a reasonable amount of time.

2.3 Membrane-wave sensitivity functions

2.3.1 A “direct” approach

Let us introduce the single-scattering sensitivity function K(ϑ, ϕ) (e.g., Spetzler et al.

2002), relating a local relative perturbation in phase velocity δc/c on the sphere’s surface
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Table 2.2: Performance efficiency. Runtimes with (a) different numbers of processors and
an average grid spacing of 70 km, (b) 16 processors∗, different grid spacings.

(a)

number of runtime
processors [s]

1 60.9 s
2 31.8 s
4 15.9 s
8 8.5 s
16 5.5 s

(b)

grid spacing runtime
[km] [s]

278 0.1 s
139 0.7 s
70 5.5 s
35 42.0 s
17 340.3 s

* processor type: AMD Opteron 64-bit, 2 GHz clock speed

Ω to a relative phase anomaly δΦ/Φ, via the linear equation

δΦ

Φ
=

∫
Ω

K(ϑ, ϕ)
δc

c
(ϑ, ϕ) dΩ. (2.14)

It is intended that K(ϑ, ϕ) depends on the source-station distance, or, in the case of a

laterally heterogeneous Earth (membrane), on the locations of source and station.

For any given source-station combination, K(ϑ, ϕ) can be determined numerically,

performing a set of simulations on a given background phase-velocity model c(ϑ, ϕ),

with one small perturbation at a single cell centered at (ϑi, ϕi),

δc

c
= fi(ϑ, ϕ) =

{
γ in the grid-cell centered at (ϑi, ϕi)

0 everywhere else.
(2.15)

Equation (2.14) then becomes

δΦi

Φ
=

∫
Ω

K(ϑi, ϕi)γ dΩ = K(ϑi, ϕi)γAi, (2.16)
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where Ai is the area of the ith cell. We denote δΦi the phaseshift associated with

the perturbation (2.15), which we calculate by a membrane simulation and subsequent

cross-correlation of the modeled phase with the unperturbed one. Then, from (2.16),

K(ϑi, ϕi) =
δΦi

ΦAiγ
, (2.17)

and K(ϑi, ϕi) can be found from the numerically calculated δΦi. In our calculations of

δΦi, we compute cross-correlation on the basis of Press et al.’s (1992) routine, but with

quadratic subsample precision (Smith & Serra 1987).

Notice that numerical integration of eq. (2.3) on the membrane involves a simplified

representation of the source in terms of initial displacement and source-time function

(section 2.2.1). We must therefore neglect the effects on wave propagation of specific

seismic source mechanisms (Zhou et al. 2004; Yoshizawa & Kennett 2005). This will be

the subject of further investigations.

In principle, calculating K(ϑi, ϕi) for each cell i requires as many simulations as there

are cells. This exercise then has to be repeated, in the case of a homogeneous reference

Earth (constant c(ϑ, ϕ)), for a dense set of epicentral distances spanning the range of

true epicentral distances at which observations are available. In the case of a laterally

heterogeneous reference Earth, it has to be repeated for each combination of source and

station locations for which observations are available. The latter endeavour is too costly

and we have discarded it; however, in the case of a constant reference phase velocity, it

is feasible to calculate kernels via eq. (2.17).

Geometrical setup

We reduce the number of simulations needed to find K(ϑ, ϕ) in the “direct” approach as

follows (Tong et al. 1998): after placing the source at, say, the North Pole, we perform

one simulation for each scatterer location along one chosen meridian (Fig. 2.4). For each

simulation, we save modeled traces at an array of receivers located along the parallels,

spaced 1◦ in longitude and latitude from each other. If the background Earth model

is homogeneous, what matters is not the absolute locations of scatterer and receiver,

but their relative positions. From the set-up described above we therefore find the

same traces that we would find considering one receiver at a time, and performing one

simulation per possible scatterer location.
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Figure 2.4: Set-up for the “direct” approach to computing sensitivity kernels (section
2.3.1), with one source (star) located at the North Pole, the scatterer posi-
tion (circle) varying along a single meridian, and a set of receiver stations
(triangles) located along parallels.

In practice, this results in reducing the number of required simulations from 64, 442

to 181 (for the reference case of 1◦ × 1◦ sampling of K(ϑ, ϕ), and using 360 receivers

simultaneously). Running our parallel algorithm on 16 processors, with a grid-spacing

of about 70 km (level 6 hexagonal grid), we entirely determine K(ϑ, ϕ), for a given

epicentral distance, in about 6 minutes. Without the simplification introduced here, the

same computation would take approximately 3 days.

Nonlinearity

In principle, sensitivity functions derived as in section 2.3.1 should not depend on the

value of the imposed phase-velocity perturbation γ. However, as γ grows, the problem

eventually becomes nonlinear, and the linearized equation (2.14) ceases to be valid, to-

gether with the concept itself of sensitivity kernels. Testing the stability of our algorithm,
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we have found that, above a certain threshold (γ ∼ 2%), the mentioned nonlinearity

comes into play and numerical kernels we find are slightly but visibly affected by changes

in the value of γ.

Hung et al. (2001) found a similar effect from a set of 3-D spectral element simulations.

In their figure 17 they plot traveltime anomaly found by cross-correlation (equivalent

to our δΦ) as a function of imposed heterogeneity (γ in section 2.3.1 here, ε in Hung

et al.’s (2001) notation). While Born theory requires that a linear relationship exists

between δΦ and γ, the corresponding curve obtained from numerical results is a straight

line only for small values of γ. Hung et al. (2001, section 5.6) find an asymmetry in

the dependence of δΦ on γ for positive vs. negative values of γ. They explain this

result as a combination of wavefront healing and the “overhealing” effect of the cross-

correlation technique. In our case there is not such a strong asymmetry between the

effect of negative and positive anomalies.

2.3.2 The adjoint approach

Our “membrane” algorithm is efficient enough that, on a homogeneous reference Earth,

K(ϑ, ϕ) can be computed by a large set of direct simulations. The number of simulations

required to determine K(ϑ, ϕ), however, is much larger when the reference Earth is

laterally heterogeneous, and the “direct” approach outlined above ceases to be practical.

Tromp et al. (2005) give an overview of the application of back-propagation to the

calculation of sensitivity functions, resulting in the “adjoint methods” introduced by

Tarantola (1984) or Talagrand & Courtier (1987). In this approach, regardless of the

complexity of the reference model, K(ϑ, ϕ) for a given source-receiver pair can be fully

determined with two simulations only: one for the forward-propagating wavefield, from

the source to the receiver; another for the back-propagating wavefield, from the receiver

to the source. At each point (ϑ, ϕ), K(ϑ, ϕ) is found algebraically as a function of the

forward- and back-propagating wavefields.

Next we provide a formulation of the adjoint method for the case of surface wave

phase-anomaly observations, to be inverted tomographically in our spherical membrane

approach. Part of our treatment is very similar to that of Yoshizawa & Kennett (2005,

section 2), except that we prefer to work in the time domain; the rest follows Tromp et

al. (2005, sections 2 and 4.1).
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Writing displacement anomalies in terms of the Green’s function

The time-domain version of eq. (2.3) is given by[
1

c2(x)
∂2
t −∇2

1

]
s(x, t) = f(xs, t), (2.18)

with x = (ϑ, ϕ) for brevity, xs denoting the location of the source, and f(xs, t) a forcing

term representing the source. Let us symbolize c0 and s0, respectively, the values of phase

velocity and of the solution to (2.18) associated with our reference Earth (membrane)

model (c0(x) need not be uniform); then[
1

c2
0(x)

∂2
t −∇2

1

]
s0(x, t) = f(xs, t). (2.19)

After adding a term 1
c20(x)

∂2
t s(x, t) to both sides of (2.18),

[
1

c2
0(x)

∂2
t −∇2

1

]
s(x, t) = 1

c20(x)

[
1− c20(x)

c2(x)

]
∂2
t s(x, t) + f(xs, t). (2.20)

Introducing

δc(x) = c(x)− c0(x), (2.21)

we simplify the right hand side of (2.20) noting that

1− c2
0(x)

c2(x)
=

2c(x)δc(x)− [δc(x)]2

c2(x)
≈ 2δc(x)

c(x)
, (2.22)

after neglecting perturbations of second order in δc. Likewise, introducing δs(x, t) =

s(x, t)− s0(x, t) and using the relation (2.19), we reduce (2.20) to[
1

c2
0(x)

∂2
t −∇2

1

]
δs(x, t) =

2δc(x)

c2
0(x)c(x)

∂2
t s(x, t). (2.23)

Since we are neglecting terms of second order in δc, s(x, t) can be replaced by s0(x, t)

in the right hand side.

If we know the Green’s function (e.g., Dahlen & Tromp 1998) for the membrane
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problem in question, defined as the solution G(x,x′; t, t′) to[
1

c2
0(x)

∂2
t −∇2

1

]
G(x,x′; t, t′) = −δ(x− x′)δ(t− t′), (2.24)

we can use it to find a solution to (2.23), i.e.,

δs(x, t) =

∫ t

0

∫
Ω

− 2

c2
0 (x′)

G (x,x′; t− t′) ∂2
t s0 (x′, t′)

δc (x′)

c (x′)
dx′dt′. (2.25)

Notice that the procedure we have followed so far is analogous, for example, to those of

Snieder & Nolet (1987), Dahlen et al. (2000), and Boschi (2006).

Writing travel-time (or phase) anomalies in terms of the Green’s function

As in Dahlen et al. (2000), we assume that the phase anomaly between two seismograms

can be defined as the value of phase-shift between the two, that maximizes their cross-

correlation. In terms of travel time T , and relative perturbations in travel time δT
T0

(which coincide with relative perturbations in phase), this implies

δT

T0

=
1

T0

1

N

∫ T

0

w(t)∂ts(xr, t)δs(xr, t) dt (2.26)

(Tromp et al. 2005, eq. (41); Marquering et al. 1999), where T is the duration of the

seismogram and N is a normalization factor given by

N =

∫ T

0

w(t)s(xr, t)∂
2
t s(xr, t) dt, (2.27)

where w(t) denotes the cross-correlation window and xr the location of the receiver.

Note that N will be different for each source-station pair. Substituting (2.25) into

(2.26),

δT

T0

= 1
T0

1
N

∫ T
0
w (t) ∂ts (xr, t)

∫ t
0

∫
Ω
− 2
c20(x′)

×G (xr,x
′; t− t′) ∂2

t s (x′, t′)
(
δc(x′)
c(x′)

)
dx′ dt′ dt. (2.28)
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2.3 Membrane-wave sensitivity functions

Finding membrane sensitivity kernels in the adjoint approach

It is now convenient to make use of the equality (Tromp et al., 2005)∫ T

0

h(t)

∫ t

0

g(t′) dt′ dt =

∫ T

0

g(t)

∫ T−t

0

h(T − t′) dt′ dt, (2.29)

valid for any integrable functions h(t), g(t), to rewrite eq. (2.28) in the form

δT

T0

=
∫

Ω
1
T0

1
N

∫ T
0
− 2
c20(x′)

∂2
t s (x′, t) δc(x′)

c(x′)

∫ T−t
0

G (x′,xr, T − t− t′)

×w (T − t′) ∂ts (xr, T − t′) dt′ dt dx′. (2.30)

If one then denotes

s̄†(x′,xr, T − t) =
1

N

∫ T−t

0

G(x′,xr, T − t− t′)w(T − t′)∂ts(xr, T − t′) dt′, (2.31)

eq. (2.30) is reduced to

δT

T0

= −
∫

Ω

1

T0

∫ T

0

2

c2
0(x′)

∂2
t s(x

′, t)
δc(x′)

c(x′)
s̄†(x′,xr, T − t) dt dx′. (2.32)

From a comparison of (2.32) with (2.14), we infer

K(x,xr) = − 2

T0 c2
0(x)

∫ T

0

s̄†(x,xr, T − t)∂2
t s(x, t) dt. (2.33)

On the basis of eq. (2.31) and of the definition of Green’s function, s̄† coincides with

the wavefield originated on the membrane by a source

f̄ †(x, t) =
1

N
w(T − t)∂ts(xr, T − t)δ(x− xr). (2.34)

In analogy with Tromp et al. (2005), we call s̄† and f̄ † “adjoint field” and “adjoint

source”, respectively. Notice that the adjoint source is by definition located at the

receiver xr, and that it contains the time-reversed velocity seismogram from the forward

synthetic wavefield.

The practical relevance of equations (2.31) through (2.34) becomes apparent when one

realizes that (2.31) can be implemented numerically, feeding f̄ † as defined by (2.34) to a
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2 Membrane waves

numerical algorithm like our finite-difference membrane scheme, reversed in time. One

forward-propagating simulation must be conducted previously, so that s(xr, t) be known

(its first and second derivatives with respect to time can be determined numerically):

the adjoint source is then entirely defined, and one more run of the finite-difference

algorithm is sufficient to determine K(x,xr), for all values of x. Whatever the source-

station geometry, and the complexity of the starting model c0(x), K(x,xr) is known

after two simulations only.

2.3.3 Some practical considerations

Discretization of the adjoint source

Like the initial displacement (2.5), (2.6), the adjoint source must be discretized on our

membrane grid; let us introduce a discretized version f̄ †m (subscript m for membrane)

of f̄ † as defined by equation (2.34),

f̄ †m(x, t) =
1

N
w(T − t)∂ts(xr, T − t)h(x,xr), (2.35)

with

h(x,xr) =

{
1 when x is in the same grid-cell as xr

0 elsewhere.
(2.36)

Let us then denote s̄†m the adjoint field generated by f̄ †m on the discretized membrane.

Then, by definition of Green’s function,

s̄†m(x,xr, T − t) =
∫ T−t

0

∫
Ω
G(x, x̃, T − t− t′)f̄ †m(x̃, t′)dx̃ dt′ (2.37)

= 1
N

∫ T−t
0

∫
cell-xr G(x, x̃, T − t− t′)w(T − t′)

×∂ts(xr, T − t′)dx̃ dt′ (2.38)

= 1
N

∫ T−t
0

G(x,xr, T − t− t′)w(T − t′)∂ts(xr, T − t′) dt′

×
∫
cell-xr dx̃ (2.39)

= s̄†(x,xr, T − t)Ar, (2.40)

with cell-xr denoting the surface of the grid-cell containing xr, and Ar its area.

As in practical implementations we shall obtain the “discretized” adjoint wavefield s̄†m,

it makes sense to use (2.40) and replace s̄† with s̄†m/Ar in (2.33), to find an expression
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for the discrete version Km of sensitivity kernels

Km(x,xr) = − 2

Ar T0 c2
0(x)

∫ T

0

s̄†m(x,xr, T − t)∂2
t s(x, t) dt . (2.41)

Waveform filtering

While we are interested in the propagation of one mode (one frequency of the disper-

sive surface wave packet) at a time, our membrane analogue is excited over a range of

frequencies, depending on the initial conditions (2.5) and (2.6). To isolate the mode

of interest, we bandpass-filter the solution using as center frequency the frequency of

the mode of interest, and a half-bandwidth of 2.5 mHz. Spetzler et al. (2002) average

their sensitivity kernels over the same bandwidth, to account for the fact that single-

frequency phase-velocity measurements are not possible, owing to the finite sampling of

seismograms and to the finite parameterization of the dispersion curve in the measure-

ment process. The selected value for bandwidth also coincides with the spacing between

splines parameterizing the measured dispersion curves in Ekström et al. (1997, figure

1), which could be taken as a rough estimate of the accuracy of said dispersion curves

(Boschi 2006).

As noted in section 2.2.1, each membrane simulation provides the surface wave po-

tential s associated with one specific surface wave mode. Strictly speaking, only the

component of s at the frequency of the mode of interest is then physically meaningful.

The relatively large bandwidth of our bandpass filter leads, however, to an effect similar

to that found analytically by Spetzler et al. (2002), reducing the amplitude of kernels’

sidelobes. Filtering can be equivalently applied to the scalar potential s found by nu-

merical integration on the membrane, or to the initial conditions (2.5) and (2.6). We

have experimented with both approaches, obtaining practically coincident results. The

latter option is naturally more efficient.

2.4 Results

The discussion that follows is limited to phase-velocity kernels of intermediate-to-long

period Love waves; we expect that a similar procedure is valid, and the same qualitative

results hold for the case of Rayleigh waves.
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2.4.1 Sensitivity kernels for a homogeneous (spherical-Earth) starting model

Comparing analytically and numerically determined sensitivity kernels

In Fig. 2.5 we compare a sensitivity kernel calculated numerically in the membrane ap-

proach, with one calculated analytically from Boschi’s (2006) implementation of Spetzler

et al.’s (2002) eq. (16), based on Snieder & Nolet’s (1987) single-scattering approach.

Source (0◦N, 0◦E) and receiver (0◦N, 90◦E) locations, and surface wave period (150 s)

are the same in both cases. The background value for phase velocity coincides with

the Love-wave, PREM-based (Dziewonski & Anderson 1981) value. Numerical kernel

values are calculated on the cell midpoints (as described in section 2.2.3) of our grid and

then interpolated for plotting with 1◦ spacing in both latitude and longitude. Analytical

values are likewise averaged over each cell and interpolated for plotting.

Figure 2.5: Sensitivity kernel for Love waves at 150 s, spherical Earth model (homoge-
neous phase velocity), source at (0◦N, 0◦E) and receiver at (0◦N, 90◦E), (a)
calculated numerically in the “direct” approach; (b) calculated implementing
the analytical formula of Spetzler et al. (2002).

(a) (b)

As pointed out by Favier et al. (2004) and Boschi (2006), Spetzler et al.’s (2002)

and other Born-theory formulations (e.g., Zhou et al. 2004; Yoshizawa & Kennett
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2005) involve a far-field approximation of the unperturbed solution; sensitivity kernels

found in this approach are necessarily singular at source and receiver. This explains the

unphysical behavior of analytical kernels evident from Fig. 2.5b at longitudes around 0◦

and 90◦. Furthermore, analytical kernels in Fig. 2.5 are zero at longitudes larger than

the epicentral distance, and at any location at a negative azimuth from the source; this

is an effect of simplifications in Spetzler et al.’s (2002) procedure — a fictitious feature

that we do not find in expressions for analytical kernels later derived by Zhou et al.

(2004) and Yoshizawa & Kennett (2005).

Comparing sensitivity kernels found via the “direct” vs. adjoint approach

In Fig. 2.6 a comparison between cross-sections of numerical kernels for Love waves at

150 s period is shown. Numerical kernel values are either calculated with the “direct”

approach or the adjoint method, both described in section 2.3. We employ in both

cases the same numerical mesh and homogeneous background model. For the “direct”

approach, we apply a relative perturbation γ of −0.2%. Source and station are at a fixed

epicentral distance and placed as in Fig. 2.5. Cross-sections of both kernels are taken at

distinct longitudes. The “direct” calculation takes about six minutes on 16 processors to

produce a complete numerical-direct kernel over the whole sphere (using the reduction

from section 2.3.1). With the adjoint method, the complete numerical-adjoint kernel is

obtained in about two minutes on a single processor. As can be seen, the two kernels

are practically identical. This is an important demonstration of the internal consistency

of our approaches.

In Fig. 2.7 we explore how membrane sensitivity kernels vary as a function of source-

station distance; the area of all Fresnel zones expands as already described by, e.g.,

Spetzler et al. (2002, figure 2b). For stations located closer to the epicenter, overall

higher sensitivity is found.

Fig. 2.8 shows the dependence of sensitivity kernels on wave period at a fixed epicen-

tral distance. The central lobes of the kernels increase with increasing period. This is

qualitatively confirmed by analytical results (e.g., Spetzler et al. 2002, figure 2a).

Due to the memory-intensive storage of the numerical grid, our current computer

hardware prevents us from running simulations with periods <75 s. The numerical

scheme we apply requires about 10 nodes per wavelength for an accurate representation

of the wave phenomena on the membrane (see section 2.2.3); thus, for shorter periods
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Figure 2.6: Cross-sections of sensitivity kernels for Love waves at 150 s calculated via
the “direct” approach (dashed lines) and adjoint method (solid lines), with
source at (0◦N, 0◦E) and receiver at (0◦N, 90◦E). Sensitivity values are plot-
ted as a function of latitude only, along three chosen meridians, namely (a)
10◦, (b) 20◦ and (c) 45◦.

(a) (b) (c)

we would need a grid spacing with less than 17 km distance which leads to more than

two million grid cells. With 2 GB RAM memory per cluster node we are bound by

this limitation. A work-around could consist of accessing the mesh points through I/O

with a corresponding file storage. This would considerably slow down the computation

process.

2.4.2 Sensitivity kernels for a laterally heterogeneous starting model

Our method naturally allows us to calculate phase-velocity sensitivity kernels associated

with a laterally heterogeneous starting model (background Earth). Computing a single

numerical kernel in the adjoint approach takes exactly the same time (2 minutes on

one of our processors) regardless whether the background Earth is homogeneous or

heterogeneous. In the limit of our smooth-Earth assumption, we explore the impact of

background heterogeneities on the properties of surface wave kernels.

Fig. 2.9 shows a starting model for 150 s Love wave phase velocity. We derived it based

on local normal-mode theory (Boschi & Ekström 2002), from an Earth model consisting

of the 3-D crustal model Crust-2.0 (Bassin et al. 2000), overlying a 1-D, radially isotropic

profile of the mantle as in Boschi et al. (2004). The map in Fig. 2.9 represents a rough

guess of crustal effects on long-period Love wave propagation, and is independent of
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Figure 2.7: Numerical-adjoint kernels derived for 150 s Love waves in a homogeneous
starting model. The source is located at (0◦N, 0◦E), the receiver at 0◦N and
(a) 60◦E, (b) 90◦E and (c) 120◦E.

(a) (b)

(c)
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Figure 2.8: Numerical-adjoint kernels for Love waves at (a) 150 s, (b) 100 s and (c) 75
s periods, in a homogeneous starting model. The source is located at (0◦N,
0◦E), the receiver at (0◦N, 90◦E).

(a) (b)

(c)
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surface wave observations like those we will invert in the following. In order to expect

significant differences, it has been filtered to harmonic degrees ≤ 40 (thus allowing

spatial wavelengths close to the ones of Love waves at 150 s). Our implementation

is only physically meaningful in the smooth-Earth approximation (section 2.2.1); the

algorithm remains stable in the presence of strong gradients, but the formulation of the

membrane approach depends upon lateral smoothness.

Figure 2.9: 150 s Love-wave phase-velocity map based on Crust-2.0 (Bassin et al. 2000)
and an isotropic upper-mantle model. The phase-velocity heterogeneities
are represented by a spherical harmonic expansion with degrees l ≤ 40,
resulting in a low-pass filtered phase-velocity map (the membrane analogue
has physical meaning in a smooth Earth regime). Phase-velocity values are
projected onto our hexagonal grid, and plotted as colored dots at the centre
of each of its cells (122,882 total cells). Source and receiver are denoted by
the star and triangle connected by the source-receiver great circle, which
crosses the Tibet anomaly. Phase-velocity anomalies are given in percent
with respect to PREM.

We show in Fig. 2.10a a 150 s Love wave kernel based on the model of Fig. 2.9, and a

source-station geometry that should maximize the effect of the starting model’s strongest

phase-velocity heterogeneity, located in the Himalaya region with approximately −3%

relative phase-velocity perturbation. The homogeneous-Earth kernel associated with
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the same source and receiver is shown in Fig. 2.10b, and the difference between the

two in Fig. 2.10c. The two kernels coincide in the first Fresnel-zone (main lobe), while

significant differences are apparent in the sidelobes. Strongest differences are found to

the southeast of the great circle path, corresponding to higher gradients in phase velocity

(transition from a continental to an oceanic region).

Figure 2.10: Sensitivity kernels derived with the adjoint method for 150 s Love waves in
(a) homogeneous and (b) heterogeneous (Fig. 2.9) starting phase-velocity
models. (c) Difference between (a) and (b).

(a) (b)

(c)

2.4.3 A test of the first-order scattering approximation

Born theory is a single-scattering theory, that is, it neglects the interaction of scattered

wavefields with other heterogeneities. In practice, the linearized, Born-theoretical eq.
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(2.14) implies that the effect of multiple heterogeneities be equal to the sum of the

independently calculated effects of each heterogeneity. In forward calculations made

on a smooth Earth model, our numerical algorithm naturally accounts for multiple

scattering. Hence, while we do not attempt to formulate an inverse problem accounting

for multiple scattering, we can perform a set of forward calculations to evaluate its

relevance, and the associated inaccuracy of the linearized Born approximation.

Let us denote δΦjk, the phase anomaly at the receiver due to the presence of two

scatterers centered at (ϑj, ϕj) and (ϑk, ϕk) (i.e., extending over the whole cell of our

hexagonal grid, centered at ϑj, ϕj or ϑk, ϕk), in an otherwise homogeneous background

model. We compute this quantity in two ways: (i) by cross-correlation between the

numerical solution found propagating membrane waves in the presence of two scatterers,

and the one found on a homogeneous membrane; (ii) making use of previously calculated

kernels K(ϑ, ϕ) to implement

δΦjk = K(ϑj, ϕj)ΦγAj +K(ϑk, ϕk)ΦγAk, (2.42)

based upon equation (2.14), where Φ is the homogeneous reference phase, Aj, Ak are

the areas of the cells to which (ϑj, ϕj) and (ϑk, ϕk) respectively belong, γ is the phase-

velocity perturbation, which for simplicity we choose to have the same value at both

scatterers.

In the approach (i), multiple scattering is implicitly accounted for; in the approach

(ii) it is neglected. The linearized Born approximation would suggest that both values

of δΦjk are identical; differences between the resulting phase anomalies are the effect

of multiple scattering. We perform a number of simulations with: source and receiver

located at (0◦, 0◦) and (0◦, 90◦), respectively; one scatterer located at 45◦ longitude, and

at latitudes varying between −60◦ and 60◦; a second scatterer at the same latitude, and

at a longitudinal distance of +3◦, +6◦ or +9◦ to the first. For each considered couple

of scatterers, we find phase anomaly both by “direct” numerical calculation (approach

(i)) and by eq. (2.42) (approach (ii)); we plot in Fig. 2.11 the difference between the

resulting values of δΦ as a function of scatterer-latitude.

As a general rule, we find that the effects of multiple scattering on seismic phase

are small and the linearization in eq. (2.14) is valid. The largest discrepancy in δΦ

amounts to ∼0.15% of the maximum δΦ predicted by eq. (2.42) and corresponds to the

smallest distance (3◦) between the two scatterers. These values are so small that the
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Figure 2.11: Effects of multiple scattering. We use the membrane-wave method to cal-
culate the phase anomaly δΦnum

i resulting from two scatterers, located at
the same latitude and longitudinal distances 3◦, 6◦ and 9◦, and source
and receiver at (0◦N, 0◦E) and (0◦N, 90◦E), respectively. After each
simulation, we subtract δΦnum

i from the phase anomaly δΦBorn
i by sim-

ple Born theory (no multiple scattering, but the sum of the individual
effects of each scatterer) and normalize the result to the maximum value of
δΦBorn

i from all our multiple-scattering simulations. The resulting quantity
(δΦBorn

i − δΦnum
i )/max{δΦBorn

i } is plotted in percent vs. scatterer latitude,
with a separate curve for each value of longitudinal distance between scat-
terers (3◦: solid line, 6◦: long-dashed line, 9◦: short-dashed line).

shape of the curves is significantly affected by the irregularity of the grid: gridpoints do

not precisely align along parallels, but can be shifted up to ±0.5◦ in our mesh and the

curves in Fig. 2.11 are jagged as a result. Multiple scattering becomes even less relevant

for larger inter-scatterer distances (6◦ and 9◦ in our experiment). The latter result is

to be expected, as the energy of the scattered wavefield at a given point decreases with

increasing distance from the scatterer, by simple geometrical spreading. We infer that in

a smooth-Earth regime the Born linearization is valid in the tomographic determination

of phase-velocity anomalies. It would become less reliable at longer times/higher orbits.
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2.4.4 Application to fundamental-mode surface wave tomography

The inverse problem of identifying a phase-velocity map from dispersion measurements

compiled from a large set of source-receiver pairs is typically reduced to solving a linear

system

A · x = d (2.43)

(e.g., Boschi 2001), where the entries of x are the unknown coefficients of the phase-

velocity map to be determined and those of d the measured relative phase anomalies

δΦ/Φ. As a result of eq. (2.14), and employing a pixel parameterization (Boschi 2006),

Aij =

∫
jth pixel

Kith datum(ω, ϑ, ϕ) dΩ. (2.44)

We invert the database of Ekström et al. (1997), updated as described by Boschi &

Ekström (2002), implementing (2.44) and least-squares solving (2.43) with the algorithm

of Boschi (2006), but calculating K(ω, ϑ, ϕ) in different ways and different starting

models, as described below. Our phase-velocity maps are linear combinations of equal-

area pixel functions as in Boschi et al. (2006). The coverage (see Fig. 2.12 for 150 s

Love-wave observations) and resolving power of the Harvard dispersion database have

been evaluated in earlier publications (e.g., Ekström et al. 1997; Carannante & Boschi

2005).

Tomography with a homogeneous starting model

We follow the procedure described in sections 2.3.2 and 2.3.3 to calculate sensitivity

kernels K(ω, ϑ, ϕ) defined by eq. (2.14) (strictly speaking, what we find and use is their

“discretized version” Km(ω, ϑ, ϕ) defined by (2.41)). So long as the starting model is

homogeneous, the function K(ω, ϑ, ϕ) changes if the source-receiver distance changes,

but is not affected by changes in the locations of source and receiver: following Boschi

(2006), we find K(ω, ϑ, ϕ) at a discrete set of epicentral distances ranging from 20◦ to

179◦, with 1◦ increments. We later spline-interpolate (Press et al. 1992) calculated

K(ω, ϑ, ϕ)’s to find K(ω, ϑ, ϕ) for any epicentral distance (Boschi 2006). In analogy

with Spetzler et al. (2002) or Boschi (2006), we neglect source-mechanism variations for

different events in the database, and use the source term (2.5), (2.6).

After implementing eq. (2.44) for the entire database at a chosen surface wave mode,
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Figure 2.12: Ray-theoretical hitcount map (number of rays crossing each pixel) from the
Harvard database, 150 s Love wave observations only. The equal-area pixel
parameterization (3◦×3◦ at the equator) is the same used in our inversions.

Figure 2.13: Trade-off analysis for the phase-velocity inversions of section 2.4.4 (homo-
geneous starting model). (a) L-curves for solutions derived from ray theory
(dotted line, triangles), analytical Born theory (dashed line, pluses), and
numerical-adjoint kernels (solid line, squares). (b) Curvature of the curves
shown in (a). Image roughness is defined and normalized as in Boschi
(2006).

(a) (b)
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Figure 2.14: Phase-velocity maps from the inversions of section 2.4.4 (homogeneous
starting model). We compare solutions found from (a) ray theory, (b)
analytical Born theory, (c) numerical-adjoint kernels. Phase anomalies are
in percent with respect to the value predicted by PREM.

(a)

(b)

(c)
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we least-squares invert (2.43) a number of times, varying the value of the roughness-

damping parameter (Boschi 2006; Boschi et al. 2006); no other regularization constraint

is applied. The resulting L-curve, or plot of misfit vs. normalized roughness of the

solution, as defined by Boschi (2006), is shown in Fig. 2.13a. While we experimented

with a variety of surface wave modes and tomographic parameterization, we shall limit

our discussion to 150 s Love wave data inverted on a grid of equal area pixels with

surface extent 3◦ × 3◦ at the equator.

We repeat this exercise, employing alternatively ray-theoretical sensitivity kernels,

and analytical Born-theoretical ones based on Spetzler et al. (2002). We find that the

L-curves resulting from the three approaches are qualitatively similar, as also noted by

Boschi (2006). We identify from Fig. 2.13b solutions corresponding to equal curvature

of the associated L-curves, and roughness comparable to that of, e.g., Ekström et al.

(1997). Associated phase-velocity maps are shown in Fig. 2.14. The results of the three

approaches are remarkably similar; the only discrepancies worth mentioning are perhaps

two fast anomalies of small lateral extent, in the sourtheastern part of the Chinese Gansu

province and in the Andes, present in the analytical-Born-theory solution, but not in

the other two.

The most time-consuming part of our experiment was the calculation of sensitivity

kernels at the mentioned set of 160 epicentral distances, for one surface wave mode (150

s Love waves). Applying the adjoint method on one processor, this would last about 5

hours. Computing Aij for 16, 624 observations of δΦ/Φ takes another 5 hours. Finally,

least-squares solving the resulting linear inverse problem by means of LSQR, with A

relatively dense, for a large set of roughness-damping parameter values takes a further

3 hours.

Tomography with laterally heterogeneous starting models

As discussed in section 2.4.2, in a laterally heterogeneous Earth the form of a sensitivity

function K(ω, ϑ, ϕ) depends not only on epicentral distance, but also on the specific

locations of source and receiver. For this reason, K(ω, ϑ, ϕ) has to be calculated for

each source-receiver pair, that is, for each observation in the database. At the speed

of currently available hardware, this would be practically impossible if the “direct”

approach algorithm of section 2.3.1 were used. It becomes feasible when the procedure

described in section 2.3.2 is applied, thanks to the gain in speed achieved with the
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adjoint approach.

We limit ourselves, again, to Love-wave phase-anomaly observations at 150 s, and

use as a starting phase-velocity model the one of Fig. 2.9, based on the crustal model

Crust-2.0 and an isotropic upper-mantle model (section 2.4.2). We next

1. multiply the matrix A found in the homogeneous-model case by the vector of

starting-model coefficients, and subtract the resulting phase-anomaly vector from

the data; let us denote d′ the resulting, corrected phase-anomaly vector;

2. following the method described in section 2.4.2, compute a sensitivity kernel for

each of the 16, 624 summary observations (150 s Love waves only) available in the

Harvard database; let us denote K ′
ith datum

(ω, ϑ, ϕ) the kernel associated with the

i-th observation;

3. after a kernel is calculated, augment the matrix A′ accordingly; the ij entry of A′

is naturally defined

A′ij =

∫
jth pixel

K ′ith datum(ω, ϑ, ϕ) dΩ, (2.45)

with the same pixel grid used in previous inversions (approximately equal-area

pixels, 3◦ × 3◦ at the equator);

4. iterate the two previous steps until A′ accounts for all available data;

5. dubbed x′ the coefficients of perturbations to the starting model of Fig. 2.9,

least-squares solve the linear inverse problem

A′ · x′ = d′ (2.46)

repeatedly, for a wide range of values of the roughness damping parameter (again,

no other regularization constraint is applied);

6. conduct a trade-off analysis to identify a preferred solution model, whose regular-

ization is compatible with that applied in earlier experiments, so that the results

can be compared (Boschi 2006).

The L-curve and its curvature resulting from the trade-off analysis (vi) are shown in

Fig. 2.15a and 2.15b, respectively, as functions of normalized image roughness. The
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Figure 2.15: Trade-off analysis for the phase-velocity inversions of sections 2.4.4 and
2.4.4 (heterogeneous starting model). (a) L-curves for solutions derived
using numerical-adjoint kernels based on three different starting models: a
homogeneous starting model (solid line, squares) (curve repeated from Fig.
2.13); the heterogeneous starting model shown in Fig. 2.9, which itself
was derived from Crust-2.0 and an isotropic upper-mantle model (dotted
line, crosses); the heterogeneous starting model shown in Fig. 2.14c, which
itself was derived using numerical-adjoint kernels (dashed line, circles). (b)
Curvature of the curves shown in (a).

(a) (b)

L-curve of Fig. 2.13 derived by numerical-adjoint kernels is also shown in Fig. 2.15 for

comparison. Starting the inversion from a heterogeneous model, derived from Crust-2.0

and a spherically symmetric upper-mantle model (Fig. 2.9), leads to solutions with a

worse datafit than the homogeneous-starting-model ones of equal roughness, suggesting

that the chosen heterogeneous model does not describe sufficiently well the propagation

of Love waves at 150 s period. As in this approach the starting model has nonzero rough-

ness, the corresponding L-curve does not tend to zero for decreasing model complexity,

but converges to the roughness value of the initial starting model.

We repeated this exercise, using as a starting model the one shown in Fig. 2.14c,

derived from the inversions using numerical-adjoint kernels. This represents a first

iteration step in a nonlinear inversion scheme where the zeroth iteration starts with a

homogeneous phase-velocity model. Steps (ii), (iii), (iv) are the most time-consuming

and took about 22 hours using 16 processors in our cluster. Step (v) takes about 3
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Figure 2.16: Phase-velocity maps derived from inversions based on two different het-
erogeneous starting models. In each case the inversion employed sensitivity
kernels calculated via the adjoint method for each respective heterogeneous
model. In (a), the starting model is the phase-velocity map of Fig. 2.9,
which was based upon Crust-2.0 and an isotropic upper-mantle model (see
section 2.4.2). In (b), the starting model is the phase-velocity map of Fig.
2.14c, which was derived using numerical-adjoint kernels (see section 2.4.4).

(a)

(b)
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hours on a single processor, as in the homogeneous-model case: this is not surprising

since A and A′ are equally dense. The solutions obtained have a slightly better fit to

the data than from the zeroth iteration. We iterated the process one more time, to find

only insignificant changes in model and misfit.

The points of equal curvature in Fig. 2.15b (dotted line/crosses, dashed line/circles)

identify our preferred solutions, which we show in Fig. 2.16. We first combine x′ with

the starting model (of Fig. 2.9 and Fig. 2.14c respectively), so that heterogeneities are

again defined with respect to the value of 150 s Love-wave phase velocity predicted by

PREM. Only few, small differences between the maps of Fig. 2.16 and those of Fig.

2.14 are apparent. Namely, in the top panel of Fig. 2.16 a fast, southeastern Atlantic

anomaly can now be distinguished from the fast anomalies corresponding to cratons

in western and southern Africa; the same happens in South America, where the fast

anomaly in the southern Atlantic Ocean is more clearly separated from the Brazilian

one. Using Crust-2.0 as a starting crustal model in a 3-D, ray-theoretical inversion, and

then computing phase-velocity maps associated with the resulting 3-D shear velocity

model, a similar effect is observed (unpublished result by L. Boschi, 2006, based on the

method of Boschi & Ekström, 2002 and Boschi et al., 2004).

We show in Fig. 2.17 the power spectrum up to degree 40 of the phase-velocity maps

in Fig. 2.14 and Fig. 2.16. All spectra strongly resemble each other, particularly at

lower harmonic degrees (longer spatial wavelengths). Notice that the phase-velocity

maps obtained from laterally heterogeneous starting models (based on Crust-2.0 and

an isotropic upper-mantle model; and based on an initial inversion from PREM) show

slightly higher spectral values at degrees > 5.

2.5 Conclusions

We model surface wave propagation in a smoothly heterogeneous Earth, implementing

the wave equation numerically on a spherical membrane (zero thickness). The numer-

ical method utilizes a finite-differences scheme specifically designed for the spherical

grids. In comparison with existing techniques, our approach has both advantages and

disadvantages. It is less accurate than the fully 3-D, numerical solution of the Earth’s

equations of motion (e.g., Komatitsch et al. 2002; Capdeville et al. 2003) in that it

requires the smooth-Earth/no-mode-coupling approximation to be made, but an order

of magnitude faster. Unlike the analytical approaches like those of, e.g., Spetzler et al.
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Figure 2.17: Harmonic spectra of models from Fig. 2.14 and Fig. 2.16. The power spec-
tra are taken from the phase-velocity maps shown in Fig. 2.14, which were
derived from a homogeneous starting model by ray theory (solid line, trian-
gle), analytical Born theory (dashed line, pluses) and numerical-adjoint ker-
nels (short-dashed line, squares), as well as the phase-velocity maps shown
in Fig. 2.16, which were derived from the heterogeneous model shown in
Fig. 2.9 (dashed-dotted line, crosses) and Fig. 2.14c (dotted line, circles)
employing numerical-adjoint kernels.

(2002); Zhou et al. (2004) and Yoshizawa & Kennett (2005), it does not involve any

far-field approximation (Favier et al. 2004), and accounts for some of the nonlineari-

ties of wave propagation in a realistic medium (Tanimoto 1990). Zhou et al.’s (2004)

method, on the other hand, considers also mode coupling. Both Zhou et al.’s (2004)

and Yoshizawa & Kennett’s (2005) methods account for the effects of seismic source

radiation, which our membrane analogue does not.

The high speed of our finite-difference membrane wave algorithm, combined with the

application of the adjoint method (e.g., Tarantola 1984; Tromp et al. 2005), allowed

us to use our membrane analogue to derive sensitivity kernels relating surface wave

phase-anomaly data to phase-velocity heterogeneities. We computed sensitivity kernels
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using two different approaches — one employing adjoint methods, the other using a

large set of direct calculations (no back-propagation) — and found coincident results

(Fig. 2.6). We then calculated sensitivity kernels both in a homogeneous and a laterally

heterogeneous starting model of phase velocity, and employed them in a set of global

inversions of the Harvard dispersion database (e.g., Ekström et al. 1997). Kernels

calculated in this way are free from the far-field approximation often used in analytical

Born theory (e.g., Dahlen et al. 2000; Spetzler et al. 2002; Boschi 2006a). Fundamental-

mode tomographic images and trade-off analyses (Figures 2.13 and 2.14) derived from

different approaches (ray theory, analytical Born theory, numerical Born kernels) are

approximately coincident (see also Fig. 2.17).

As explained in section 2.2, our membrane wave formulation of surface wave propaga-

tion relies on the assumption that lateral heterogeneities in upper-mantle structure are

relatively smooth. In the near future, we shall extend our numerical-adjoint method ap-

proach to 3-D Earth models, where the only limit to possible Earth’s complexity resides

in the accuracy of its numerical discretization, and it will be easier to account for the spe-

cific geometry of seismic sources — neglected here — and definitions of phase anomaly

more realistic than simple cross-correlation — employed here as a first approximation.

Recently published applications of analytical finite-frequency methods to surface wave

tomography (e.g., Zhou et al. 2004; 2005) suggest that the 3-D problem overcomes

inherent ray theoretical assumptions made when inverting for 2-D phase-velocity maps

as in this study; it will take account of depth-dependent radiation patterns for single

scatterers. We therefore expect the 3-D experiment to bring an improvement in data fit

and model quality, more significant than what was found here.
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3 Tomographic resolution of ray and finite-frequency

theories: a membrane wave benchmark

3.1 Introduction

3.2 Asymptotic theory for membrane waves

3.2.1 Standing waves

3.2.2 Traveling waves on a homogeneous membrane

3.2.3 Ray theory on a heterogeneous membrane

3.3 Benchmark of different approaches to the forward problem

3.3.1 Benchmark of ray theory

3.3.2 Benchmark of finite-frequency theory

3.3.3 Multiple ray-path example

3.4 Benchmark of different approaches to the inverse problem

3.4.1 Data coverage

3.4.2 Scalelength test

3.4.3 Noise test

3.4.4 Amplitude test

3.4.5 Realistic input model test

3.5 Conclusions

This chapter will be submitted to Geophys. J. Int., co-authors were Lapo Boschi and John Wood-
house.
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Summary

The purpose of this study is to evaluate the resolution potential of

current finite-frequency approaches to tomography, and to do that in

a framework similar to that of global scale seismology. To our current

knowledge and understanding, the only way to do this is by construct-

ing a large set of “ground-truth” synthetic data computed numerically

(spectral elements, finite differences, etc.), and then to invert them

using the various available linearized techniques. The recent efforts

of Qin et al. (2006) prove that this is extremely expensive to achieve

when a fully realistic three-dimensional Earth model is used to com-

pute the synthetics. We repeat Qin et al.’s (2006) study in a much

simplified scenario, i.e. on a laterally heterogeneous membrane of zero

thickness, as implemented by Peter et al. (2007). This amounts to

drastically reducing the computational expense, with a certain loss of

accuracy if the fine structure of a strongly heterogeneous Earth is to be

modeled. Our benchmark is strictly valid for the propagation of elastic

waves on a spherical, heterogeneous membrane, and, as shown by Pe-

ter et al. (2007), a good analogue for the propagation of surface waves

within the outermost layers of the Earth. Our analysis suggests that a

single-scattering, finite-frequency approach to tomography, with sen-

sitivity kernels computed via the adjoint method, is significantly more

powerful than ray-theory ones, as a tool to image the fine structure of

the Earth.

3.1 Introduction

Surface waves propagate within the outermost shells of the Earth. While earthquakes

and seismic stations are non-uniformly distributed all over the globe, surface waves

travel through remote regions where no stations can be placed. They are thus sampling

the Earth’s upper mantle relatively uniformly. Depending upon their frequency, surface

waves are sensitive to different depth ranges in the mantle. For these reasons, observa-
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tions of surface waves are a precious source of information on the global structure of the

Earth.

Many studies have been conducted to measure phase anomalies of surface waves with

respect to an a priori reference Earth (Ekström et al. 1997; Trampert & Woodhouse

1995, 1996 and 2001; Laske 1995 and Laske & Masters 1996; van Heijst & Woodhouse

1999). They lead to excellent databases of phase anomalies for surface waves with

periods down to about 35 seconds. The measurement techniques differ in the details

(Trampert & Woodhouse 2001), but share the main principle, which consists of filter-

ing the seismograms around a period of interest within a finite frequency-bandwidth.

The signal is thus dissected into fundamental-mode and overtones as well as arrivals

for multiple orbits. Synthetic seismograms are computed in a chosen, usually spheri-

cally symmetric, reference model. The phase anomalies are determined with respect to

such synthetic seismograms by cross-correlation or some other fitting procedure (e.g., a

downhill-simplex algorithm as in Ekström et al. 1997).

An inverse problem can then be formulated, to determine the structure through which

the surfaces waves travelled. The immense database of phase-anomaly measurements

are usually inverted for local phase velocities, thus leading to global phase-velocity dis-

tributions, which are, to first order, a linear combination of the underlying 3-D velocity

structure. Before a seismic image is used for geodynamical interpretation or other ap-

plications, its resolution must be known. The resolution of tomography is influenced by

many factors, e.g. by data coverage and measurement quality. It is often investigated

by classical checkerboard tests (Lévêque et al. 1993), solving for resolution radii (e.g.

Trampert & Woodhouse 1996) or, thanks to the continuous progress in computational

power, solving for the full resolution matrices (e.g. Boschi, 2003; Boschi et al., 2007).

All these studies are limited, in that the approximate theory used to formulate the

inverse problem (ray theory) coincides with the theory used to compute synthetic data:

inaccuracies in the solution models resulting from inaccuracies in the approximate for-

mulations of wave propagation cannot be estimated (Lévêque et al. 1993). Like Qin

et al. (2006), we overcome this problem by computing synthetic data with a numerical

approach, capable, at least to some extent, of simulating nonlinear wave propagation

effects in a laterally heterogeneous Earth. Because we limit ourselves to surface waves,

we employ the membrane-wave method (Tanimoto 1990; Tape 2003; Tape et al. 2007;

Peter et al. 2007).

In this study, we follow this approach to conduct a benchmark of tomographic al-
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gorithms based on ray theory versus single-scattering finite-frequency theory. Global

tomographic inversions have mostly relied on ray theory due to its intuitive physical

interpretation and computational efficiency. Ray theory is an infinite-frequency approx-

imation. In practice, it is valid when the wavelength of the considered seismic wave is

much smaller than the scalelength of the heterogeneities the wave is traveling through.

When inverting for a phase-velocity model, ray theory assumes that any perturbation of

phase is due to a perturbation of local phase velocities located on the ray of the consid-

ered phase. Especially for surface waves at larger periods, further away from the regime

where ray theory is valid, this approximation might limit significantly tomographic res-

olution.

Single scattering of surface waves causes phase-anomaly measurements made over a

finite-frequency bandwidth to be sensitive to phase-velocity perturbations distributed

over large areas on the globe, and not only on the ray (Woodhouse & Girnius 1982;

Li & Tanimoto 1993; Li & Romanowicz 1995; Dahlen et al. 2000; Hung et al. 2000;

Spetzler et al. 2002; Zhou et al. 2004; Yoshizawa & Kennett 2005; Boschi 2006; Peter et

al. 2007). These sensitivity areas, sometimes referred to as “banana-doughnut” kernels

(Marquering et al. 1999; Dahlen et al. 2000; Hung et al. 2000), are unique for every

single measurement. In the presence of adequate data coverage, finite-frequency theory

is expected to reveal phase-velocity structures with spatial scalelengths even smaller

than the wavelength under consideration.

In the past, comparisons made between ray and finite-frequency theory have not

decisively determined whether current formulations of finite-frequency theory improve

the resolution of tomographic images or not. For example, Spetzler et al. (2002),

Boschi (2006) and Peter et al. (2007) found that phase-anomaly observations for Love

waves at intermediate to long periods were equally well inverted by rays and banana-

doughnuts. The same can be deduced from Sieminski et al. (2004) at the regional

scale, where a test with synthetically computed fundamental Rayleigh-wave data and

a realistic distribution of events and stations suggested no improvement when using

banana-doughnuts. On the other hand, Ritzwoller et al. (2002) inverted surface-wave

group-velocity measurements for group velocity models and found a clear difference at

all periods between ray-theoretically and finite-frequency derived maps. Zhou et al.

(2005) noted a slight improvement for finite-frequency theory as well, but limited to the

case where three-dimensional sensitivity kernels were used to invert for seismic velocities

directly, by-passing the derivation of phase-velocity maps. The statistical significance
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3.2 Asymptotic theory for membrane waves

of such improvements remains to be determined.

In sections 3.2 and 3.3, we first benchmark the forward problem of predicting phase

anomalies for a given phase-velocity model. In the first part of this study, we derive an

asymptotic expression for membrane waves traveling on a sphere. It is worthwhile to

find asymptotic solutions as they can provide further insights (Segel 1966) to complex

problems. This analytical expression can further be used to calculate waveforms for

heterogeneous background models, once the ray path between source and station is

found. We validate phase-anomaly predictions made by exact ray theory and finite-

frequency theory, comparing them with numerical “membrane-wave” results.

In the second part of this study we measure the accuracy of tomographic algorithms

based on linearized ray-theory and finite-frequency tomography. The effects of scale-

length, amplitude, noise and wavelength upon the imaging process are all specifically

evaluated. We invert Love waves at intermediate to long periods with a realistic source-

station distribution. The synthetic databases are comparable in size to existing ones.

Additionally, we investigate the effects of realistic noise in the data upon the inver-

sion solutions and show to which extent they complicate comparisons between ray and

finite-frequency theory.

3.2 Asymptotic theory for membrane waves

To obtain the asymptotic, monochromatic waveforms of membrane waves (Tanimoto

1990; Tape 2003; Peter et al. 2007) for a laterally heterogeneous 1-D Earth, we first

derive a traveling-wave expression of membrane waves for a homogeneous model. To

then account for lateral heterogeneities, we calculate the phase and amplitude anomalies

for a laterally heterogeneous phase-velocity distribution by a ray-tracing algorithm. We

use them to correct the homogeneous waveforms.

3.2.1 Standing waves

The idea is to start from a standing-wave representation of membrane waves and derive

an analytical, asymptotic formulation in terms of traveling waves. Dahlen & Tromp

(1998) derived a traveling-wave decomposition of the standing-wave solution for the

general three-dimensional case. We will conduct here a simplified treatment for waves

propagating on a zero-thickness, spherical membrane.
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An analytical solution u(θ, φ, t) given at colatitude θ, longitude φ and time t for the

wave equation on a spherical, zero-thickness membrane is available for a constant phase

velocity c0 (Tape 2003, eq. 3.34):

u(θ, φ, t) = c2
0

∞∑
l=0

(l +
1

2
) Il(µ) cos(ωlt) e

−ω2
l
σ2

2 Pl(cos θ), (3.1)

with Pl denoting the Legendre polynomials of degree l. The angular frequency ωl at

degrees l = 0, 1, 2, ... is given by

ωl =
c0

√
l(l + 1)

a
(3.2)

for a given surface radius a. The integrals

Il(µ) =

∫ π

0

Pl(cos(α))
e
− α2

2µ2

µ2
sin(α)dα (3.3)

can be evaluated numerically. The solution is valid for a prescribed forcing term

f(θ, φ, t) =
e−∆2/2µ2

µ2
· −t
σ2

e−t
2/2σ2

√
2πσ

, (3.4)

with arc-distance from the source ∆ ∈ [0, π]. The source parameters σ and µ govern the

characteristic frequency content of the source. Note that the waveform u(θ, φ, t) due to

this initial source and given by eq. (3.1) is represented as a standing-wave summation.

Asymptotic approach

We rewrite eq. (3.1) with an asymptotic expression, valid for large degrees l, for the

Legendre polynomials

Pl(cos(θ)) ≈
{

2

π(l + 1
2
) sin(θ)

} 1
2

cos

[(
l +

1

2

)
θ − π

4

]
(3.5)
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(Gilbert 1976, eq. 9) and substitute λ = l + 1
2
, so that the solution becomes

u(θ, φ, t) =
∞∑

λ= 1
2
, 3
2
,...

Aλ cos(ωλt) cos
(
λθ − π

4

)
, (3.6)

where

ωλ =
c0

√
λ2 − 1

4

a
, (3.7)

Aλ = c2
0λIλ(µ)

{
2

πλ sin(θ)

} 1
2

e−ω
2
λ
σ2

2 , (3.8)

Iλ(µ) =

∫ π

0

Pλ− 1
2

(cos (α))
e
− α2

2µ2

µ2
sin(α) dα. (3.9)

Orbit separation

In the following, we separate even from odd orbits, following the derivation of Ferreira

(2005, Appendix B.1). Hence, we substitute

cos
(
λθ − π

4

)
=
eiλθe−i

π
4 + e−iλθei

π
4

2
(3.10)

into eq. (3.6) and rewrite

u(θ, φ, t) =
∞∑

λ= 1
2
, 3
2
,...

[
A+(λ)eiλθ + A−(λ)e−iλθ)

]
cos(ωλt), (3.11)

where

A+(λ) =
1

2
c2

0 λ Iλ(µ)

{
2

πλ sin(θ)

} 1
2

e−ω
2
λ
σ2

2 e−i
π
4 , (3.12)

A−(λ) = A∗+(λ), (3.13)

with ∗ denoting a complex conjugate. Note that the coefficients A+ belong to waves for

even orbits while the coefficients A− to those for odd orbits.

Given the above solution by eq. (3.11), it is still necessary to find an expression for a

single orbit. Applying the Poisson formula, the sum of a function g(λ) can be written
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as ∑
λ= 1

2
, 3
2
,...

g(λ) =

∫ ∞
0

∞∑
s=−∞

(−1)s e−iλ2πsg(λ) dλ. (3.14)

Thus, for eq. (3.11) we obtain

u(θ, φ, t) =
∞∑

s=−∞

(−1)s
∫ ∞

0

[
A+(λ)e−iλ(2πs−θ) + A−(λ)e−iλ(2πs+θ)

]
cos(ωλt) dλ. (3.15)

It becomes useful to transform this expression into the frequency domain to find

explicit solutions to the integrals. Using the Fourier transformation (non-unitary) of

f(t) =

{
0 for t < 0

cos(ωλt) for t ≥ 0
(3.16)

we can write in the frequency domain

f̃(ω) =

∫ 0

−∞
0 · e−iωtdt+

∫ ∞
0

cos(ωλt) · e−iωtdt (3.17)

=
1

2

∫ ∞
0

[
e−it(ω−ωλ) + e−it(ω+ωλ)

]
dt (3.18)

=
1

2

[
1

i(ω − ωλ)
+

1

i(ω + ωλ)

]
(3.19)

=
ω

i(ω2 − ω2
λ)
. (3.20)

It follows that eq. (3.15) in the frequency domain takes the form

u(θ, φ, ω) =
∞∑

s=−∞

(−1)s
∫ ∞

0

[
A+(λ)e−iλ(2πs−θ) + A−(λ)e−iλ(2πs+θ)

] ω

i(ω2 − ω2
λ)
dλ,

(3.21)

which has single poles at ω = ±ωλ.

The residue theorem states∮
f(z)dz = 2πi

∑
Res [f(z)] (3.22)
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3.2 Asymptotic theory for membrane waves

where the residue for a single, simple pole of order 1 is obtained by

Resz=z0 [f(z)] = limz→z0(z − z0)f(z). (3.23)

Therefore, we can write as the relevant summation of residues for eq. (3.21)∮
f(z)dz = 2πi

∑
Resz=±ωλ

[
f̃(ω)

]
(3.24)

= 2πi
∑

Resz=±ωλ

[
ω

i(ω2 − ω2
λ)

]
(3.25)

≈ 2πi

(
a

2c0i
+

a

2c0i

)
=

2πa

c0

, (3.26)

using the approximation ωλ ≈ c0λ
a

for large degrees l.

Looking at eq. (3.21) and ignoring terms A±(−λ(ω)), we get

u(θ, φ, ω) ≈
∞∑

s=−∞

(−1)s
[
A+(λ(ω))e−iλ(ω)(2πs−θ) + A−(λ(ω))e−iλ(ω)(2πs+θ)

] 2πa

c0

. (3.27)

3.2.2 Traveling waves on a homogeneous membrane

Finally, eq. (3.27) has to be Fourier-transformed back to time domain

u(θ, φ, t) ≈ 1

2π

∫ ∞
∞

∞∑
s=−∞

(−1)s
[
A+(λ(ω))e−iλ(ω)(2πs−θ) + A−(λ(ω))e−iλ(ω)(2πs+θ)

] 2πa

c0

eiωt dω.

(3.28)

The traveling-wave solutions for different orbits follow from this expression. For ex-

ample, for odd orbits we set A+(λ(ω)) ≡ 0 and use s = 0, 1, 2, ... for the first, third, fifth

and so on orbit. The corresponding expressions for the first and third orbits are

R1: u(θ, φ, t) ≈ a

c0

∫ ∞
−∞

A−(λ(ω))e−iλ(ω)θeiωt dω (3.29)

R3: u(θ, φ, t) ≈ − a
c0

∫ ∞
−∞

A−(λ(ω))e−iλ(ω)(2π+θ)eiωt dω. (3.30)

For even orbits, we set A−(λ(ω)) ≡ 0 and use s = 1, 2, 3, ... for the second, forth, sixth
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and so on orbit. The following expressions are for the second and forth orbits:

R2: u(θ, φ, t) ≈ − a
c0

∫ ∞
−∞

A+(λ(ω))e−iλ(ω)(2π−θ)eiωt dω (3.31)

R4: u(θ, φ, t) ≈ a

c0

∫ ∞
−∞

A+(λ(ω))e−iλ(ω)(4π−θ)eiωt dω. (3.32)

We calculate the integrands of eqs. (3.29) through (3.32) at each ω explicitly, and use a

numerical integration to find u(θ, φ, t). The Legendre polynomials for non-integer values

of the angular degree

l(ω) = λ(ω)− 1

2
, (3.33)

with

λ(ω) =

√
ω2a2

c2
0

+
1

4
, (3.34)

are found numerically by spline interpolation. The coefficients A+(λ(ω)) and A−(λ(ω))

are given by eq. (3.12) resp. (3.13). Similarly, the integrals Iλ(µ), given by eq. (3.9),

were interpolated by splines for non-integer values of the angular degree l(ω).

Waveform example

We choose an initial source-station couple with epicentral distance of about 90 degrees.

Figure 3.1 shows the waveform for the fourth orbit obtained by the asymptotic approach

of eq. (3.32) against the numerical solution, calculated by finite-differences integration

on a spherical membrane (Peter et al., 2007). Note that the numerical solution provides

all orbits up to the finishing time during the forward integration.

The asymptotic waveform exhibits a slightly smaller amplitude at maximum displace-

ment as the numerical one. The phase offset between the two is negligible. The agree-

ment in this homogeneous case is good enough to proceed and obtain an asymptotic

trace for a laterally heterogeneous model.

3.2.3 Ray theory on a heterogeneous membrane

The asymptotic approach provides us with a waveform for a homogeneous membrane-

wave model. To extend the treatment of section 3.2.2 to the heterogeneous case, we

first use the laws of optics to determine the ray path travelled by a wave (Woodhouse &
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3.2 Asymptotic theory for membrane waves

Figure 3.1: Waveform solutions on a spherical membrane by the asymptotic approach
for the fourth orbit (green), or calculated numerically (red) with the finite-
differences membrane-wave model of Peter et al. (2007).

Wong 1986; Boschi & Woodhouse 2006), then compute the phase by integration along

such a ray.

Ray-tracing

In order to calculate the phase ψhet for a heterogeneous background model

ψhet =

∫
ray

ω

c(θ, φ)
ds (3.35)

with local phase velocities c(θ, φ), we need to compute the corresponding ray between

the seismic source and a receiver station, a problem treated by Woodhouse & Wong

(1986) for the sphere. For brevity, we just give the two equations which relate to our

case here. We simultaneously solve for γ(φ) ≡ cot θ and γ′(φ) = dγ
dφ

(φ) in equations (33)
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and (38) of Woodhouse & Wong (1986):

d2γ

dφ2
+ γ = (

ν2

1 + γ2
)(∂θ − ν∂φ) ln c(θ, φ) (3.36)

d2γ′

dφ2
+ γ′ =

2ν

1 + γ2
(ν ′ − νγγ′

1 + γ2
)(∂θ − ν∂φ) ln c(θ, φ)

−(
ν2

1 + γ2
+ 1)

γ′

1 + γ2
(∂2
θ − ν∂θ∂φ) ln c(θ, φ)

−(
ν2

1 + γ2
+ 1)ν ′∂φ ln c(θ, φ) (3.37)

where ν(φ) ≡ −γ′(φ) = −dγ
dφ

(φ) and ′ denotes differentiation with respect to the initial

value of ν, at constant φ. The boundary conditions are γ′(0) = 0 and ν ′(0) = 1.

Ray-theoretical travel-time anomalies

Let us rotate the reference frame such that source and receiver are located on the equator.

φk becomes the epicentral distance between source and receiver. For a homogeneous

reference model, the phase ψhom(φk) can be written as

ψhom(φk) =

∫
ray

ωa

c0

dφ =
ωaφk
c0

, (3.38)

where a is the Earth’s radius and c0 the constant phase velocity for the reference model.

The phase anomaly δψ is defined as the difference in phase from that in the reference

model, i.e. (Woodhouse & Wong 1986, eq. 42)

δψ(φk) ≡ ψhet(φk)− ψhom(φk) (3.39)

=
ωa

c0

∫ φk

0

[
c0

c(θ, φ)

{
ν(φ)2

[1 + γ2(φ)]2
+

1

1 + γ2(φ)

} 1
2

− 1

]
dφ. (3.40)

Note that the phase anomaly δψ is calculated for a single frequency ω = 2π

T̂
at a certain

reference period T̂ .

We use local phase velocities c(θ, φ) which are derived from maps of relative phase-

velocity perturbations δc(θ,φ)
c0

= c(θ,φ)−c0
c0

at given T̂ taken from Trampert & Woodhouse

(1995).
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We can define

y(φk) =

∫ φk

0

[
c0

c(θ, φ)

{
ν(φ)2

[1 + γ2(φ)]2
+

1

1 + γ2(φ)

} 1
2

− 1

]
dφ, (3.41)

so that
dy

dφ
=

c0

c(θ, φ)

{
ν(φ)2

[1 + γ2(φ)]2
+

1

1 + γ2(φ)

} 1
2

− 1. (3.42)

This can be solved simultaneously with the other equations (3.36) and (3.37) from above.

We prefer working with travel-time anomalies, thus we make use of the identity be-

tween relative phase anomalies and relative travel-time anomalies

δψ

ψhom
=
δT

T0

, (3.43)

where T0 denotes the travel-time for the reference model. From eq. (3.38), we find

δψ = ψhom ·
δT

T0

=
ωaφk
c0

· δT c0

aφk
= ω · δT. (3.44)

Thus, we divide the phase anomaly δψ by the angular frequency ω to obtain travel-time

anomalies δT (of units in seconds).

3.3 Benchmark of different approaches to the forward problem

In order to compare predictions of travel-time anomalies, we use a setup of 38 receiver

stations located at about 90◦ epicentral distance from one source at 0◦ N, 0◦ E. The

heterogeneous phase-velocity model for Love waves at about 150 s period is taken from

Trampert & Woodhouse (1995). We conduct a series of independent experiments, where

we expand the model up to degree 4, 8, 12 or 20 respectively. The setup is similar to

the one used in Tape (2003). For each source-station couple we consider arrivals up to

the fourth orbit, thus at least 152 prediction values are compared for each of the four

different models. The numerically derived values, which are recalculated for each model

with different degree of complexity, can be seen as the “ground-truth” values, which the

predicted ones should match in an ideal case.
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3.3.1 Benchmark of ray theory

We first compare the ray-theoretical predictions of travel-time anomalies against numeri-

cally calculated travel-time anomalies. A reference trace for the homogeneous model and

a second trace for the heterogeneous model are computed numerically with the finite-

differences approach of Peter et al. (2007). We bandpass-filter the two numerical traces

around an angular frequency ω, for which we have also determined ray-theoretical travel-

time anomalies δT according to eq. (3.44). The bandpass-filter uses a half-bandwidth of

2.5 mHz around the center frequency ω. Following Ekström et al. (1997), we then deter-

mine the corresponding numerical travel-time anomaly by a nonlinear downhill-simplex

algorithm (Nelder & Mead 1965). We checked this algorithm against a cross-correlation

measurement technique and found almost identical results for the phase anomalies.

Figure 3.2 compares the travel-time anomalies δT calculated by eq. (3.44) (RAY-

exact) with the corresponding ground-truth data, computed numerically. Values on

the diagonal correspond to perfect agreement. We see that exact ray theory predicts

the first-orbit anomalies accurately; for higher orbits (shown with different symbols),

the values are more scattered around the diagonal, particularly for models with energy

at increasingly high harmonic degrees (compare Figure 3.2a with 3.2b, 3.2c and 3.2d).

In general, the plots of Figure 3.2 are in agreement with the results of Tape (2003).

Particularly large differences between the ray-theoretical prediction and the ground-

truth value for higher orbits and expansions are observed when multiple ray paths

between source and receiver location exist (in such cases, we plot in Figure 3.2 the

phase-anomaly associated with the first ray found by our ray-tracing algorithm).

In general, Figure 3.2 confirms two aspects of ray theory: first, ray-theoretical pre-

dictions are closely related to the ratio between the scalelength Λ of heterogeneities

and the wavelength λ under consideration. Predictions are valid when λ� Λ, and the

fit systematically decreases as the maximum harmonic degree of heterogeneity grows,

from Figure 3.2a to 3.2d. Secondly, we see that ray-theoretical predictions depend on

the travelled epicentral distance between source and receiver location. The longer the

travelled distance (the higher the orbit), the less accurate ray-theoretical predictions

become.
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3.3 Benchmark of different approaches to the forward problem

Figure 3.2: Ray-theoretical predictions of travel-time anomalies (RAY-exact) are plot-
ted versus the numerically calculated, ground-truth ones (numerical travel-
time anomaly) for 38 source-station couples with about 90◦ epicentral dis-
tance. The source is located at 0◦ N / 0◦ E. The phase-velocity map is taken
from Trampert & Woodhouse (1995) filtered to maximum harmonic degree
(a) 4, (b) 8, (c) 12 and (d) 20. Predictions for the first orbit are plotted
as dots (filled), second orbit as squares, third orbit as triangles and fourth
orbit as circles.
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3.3.2 Benchmark of finite-frequency theory

We also consider the travel-time anomalies δT predicted on the basis of the finite-

frequency kernels derived by the single scattering approximation, specifically the nu-

merical kernels Knum(θ, φ) from Peter et al. (2007). These kernels were derived by

the adjoint method (Tromp et al. 2005 and references therein) and computed for the

homogeneous background model. We calculate the corresponding travel-time anomaly

δT by integrating
δT

T0

=

∫
Ω

Knum(θ, φ)
δv

v0

dΩ (3.45)

over the whole surface Ω of the membrane, and multiplying with the reference travel

time T0 of the homogeneous case. δv
v0

denotes relative phase-velocity perturbations in the

model of Trampert & Woodhouse (1995) expanded up to degree 4, 8, 12 or 20. Figure

3.3 compares the travel-time anomalies δT calculated this way, with the corresponding

ground-truth ones. The kernels Knum(θ, φ) are computed for every orbit separately. An

example of the numerical kernels for a particular source-station couple for all four orbits

is given in Figure 3.4. Note that the shape of the kernels is strongly affected by the

filtering (corresponding to the measurement technique) with a half-bandwidth of 2.5

mHz.

Analyzing the scatter in Figures 3.2 and 3.3, we find that finite-frequency predictions

for the first orbit are more accurate than the ray-theoretical ones of Figure 3.2. As a

quantitative measure of scatter, we used a linear regression to calculate the RMS of

the residuals, which for ray-theoretical predictions of first orbit arrivals range between

0.06 − 1.36 s for the background phase-velocity map filtered to degree 4, 8, 12 and 20

(Figures 3.2a to 3.2d). The corresponding RMS range for residuals of the finite-frequency

predictions of first orbit arrivals shown in Figure 3.3a to 3.3d are between 0.05 − 0.57

s. At higher orbits, the situation is reversed, with ray theory predicting ground-truth

travel-time anomalies more accurately than the finite-frequency kernels. We tested these

numerical kernel predictions also against predictions from analytical kernels for the first

and second orbit, calculated as in Spetzler et al. (2002). The scatterplot results shown

in Figure 3.5a to 3.5d are analogous to those found from numerical kernels. The RMS

of the residuals of the (analytical) finite-frequency predictions range for the first orbit

between 0.08 − 0.68 s. For second orbit arrivals, they range between 0.79 − 8.83 s,

compared to 0.92− 8.40 s for the predictions based on numerical sensitivity kernels and

70



3.3 Benchmark of different approaches to the forward problem

Figure 3.3: Finite-frequency predictions of travel-time anomalies (Finite-Frequency) cal-
culated via eq. (3.45) are plotted versus the numerically calculated ones
(numerical travel-time anomaly). Source, stations and Earth model are the
same as in Figure 3.2. The phase-velocity map from Trampert & Woodhouse
(1995) is filtered to maximum harmonic degree (a) 4, (b) 8, (c) 12 and (d)
20. Predictions for the first orbit are plotted as dots (filled), second orbit as
squares, third orbit as triangles and fourth orbit as circles.
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Figure 3.4: Example of numerical sensitivity kernels (Peter et al. 2007), based on the
adjoint method, used for the predictions of travel-time anomalies (Finite-
frequency) in Figure 3.3 for the source located at 0◦ N / 0◦ E and a receiver
at 0◦ N / 90◦ E. Plotted are the relative travel-time kernels for the (a) first,
(b) second, (c) third and (d) fourth orbit.

(a) (b)

(c) (d)
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0.19 − 6.99 s for the ray-theoretical ones. A similar effect had been noted in attempts

to compute higher-orbit travel times by the integration of fully 3-D surface wave kernels

(personal communication with Y. Capdeville).

The accuracy of prediction depends upon the ratio of the scalelength Λ of hetero-

geneities to the width W of the first Fresnel zone. Baig et al. (2003) and Dahlen

(2004) define a dimensionless “doughnut-hole” parameter D valid for their 3-D banana-

doughnut kernels in a cartesian box model

D3D =
Λ

W
=

Λ√
λ · L

(3-D cartesian), (3.46)

where L denotes the travelled distance and λ the wavelength. Spetzler & Snieder (2001)

adapted the width W =
√

3
2
λ tan(L

2
) to spherical geometry, limited to the 2-D (surface-

wave phase velocity) case, thus

D2D =
Λ

W
=

Λ√
3
2
λ tan(L

2
)

(sphere). (3.47)

In general, it is assumed that for D → ∞, ray-theoretical predictions would become

perfectly accurate.

For wave propagation in a weakly heterogeneous, 3-D cartesian box, Baig et al. (2003)

found that banana-doughnut predictions are accurate for D3D ≥ 0.1, and ray-theoretical

ones only for D3D ≥ 0.5. Yang & Hung (2005) found that for analytical banana-

doughnut kernels, in a similar 3-D case, travel-time predictions are only accurate for

weakly heterogeneous media with perturbations ≤ 3%. Their fig. 2 shows that “Born”

theory predictions are less accurate than those of exact (general) ray theory for 1.1 ≤
D3D ≤ 1.5. In our heterogeneous models, phase-velocity perturbations can amount to

about ±6%, and depending upon the maximum degree of harmonic expansion, Λ varies

between 1′953− 8′896 km, with corresponding doughnut-hole parameters 0.7 ≤ D2D ≤
3.4 (for our first orbit kernels with 90◦ epicentral distances). In this scenario, we find

finite-frequency kernels to perform better than ray theory as a solution to the forward

problem.
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Figure 3.5: Finite-frequency predictions of travel-time anomalies using analytical sen-
sitivity kernels for minor- and major-arcs as described by Spetzler et al.
(2002). Source, stations and Earth model are the same as in Figure 3.3.
The phase-velocity map from Trampert & Woodhouse (1995) is filtered to
maximum harmonic degree (a) 4, (b) 8, (c) 12 and (d) 20. Predictions are
shown for the first (dots, filled) and second orbit (squares). An example,
similar to Figure 3.4, of the analytical sensitivity kernels for the source lo-
cated at 0◦ N / 0◦ E and a receiver at 0◦ N / 90◦ E is given for the (e) first
and (f) second orbit.
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3.3 Benchmark of different approaches to the forward problem

3.3.3 Multiple ray-path example

Ray-theoretical predictions are especially inaccurate in cases where multiple rays are

found (Tape 2003). A reference case is chosen here for a source-station couple such that

we obtain three ray paths, for the fourth orbit, which arrive at the same station location

(source at equator 0◦ N / 0◦ W, station at about 25◦ N / 90◦ W). Rays are traced, and

phase calculated in the 150 s Love wave phase-velocity map of Trampert & Woodhouse

(1995), with a spherical harmonics expansion up to degree 10. The considered case

is the only multi-pathing occurrence found for this phase-velocity map and maximum

harmonic degree, among 38 investigated source-station couples with about 90◦ epicentral

distance. If the model is filtered to lower harmonic degree, no multiple ray paths are

found for the same source-station couples; at higher harmonic degrees, multi-pathing

becomes increasingly frequent.

The ray-tracing algorithm calculates for each ray, denoted by i = 1, 2, 3, the corre-

sponding phase anomaly δψi, which is further divided by the angular frequency to obtain

the corresponding travel-time anomaly δTi for monochromatic waves with a period of

about 150 seconds. To obtain the waveform, the amplitude anomaly for each ray is

considered as well. The cumulative travelled epicentral distance from source to receiver

is 630◦. The ray-theoretical predicted values are applied to the monochromatic trace

ũ(θ, φ, t) obtained by filtering first the asymptotic waveform for the fourth orbit (see

section 3.2.2). We further corrected the travel-time and amplitude of the monochro-

matic waveform for all three rays separately by the predicted travel-time anomaly δTi

and amplitude anomaly Ai to obtain three single waveforms

ũi(θ, φ, t) = Ai · ũ(θ, φ, t+ δTi). (3.48)

Finally, all three waveforms are summed up to obtain the resulting one

ũres(θ, φ, t) =
∑
i

ũi(θ, φ, t). (3.49)

Note that ũres(θ, φ, t) is now valid for the heterogeneous model.

Eq. (3.49) is also implemented via the harmonic addition theorem, expressing the
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Table 3.1: Example of multi-pathing, with three fourth-orbit rays joining source and
receiver. The ground-truth value of travel-time anomaly, based on the traces
computed numerically with the membrane-wave model, is compared with the
ray-theoretical predictions and the resulting values by the harmonic addition
theorem. Travel-times and amplitudes are based on the 150 s Love wave
phase-velocity model of Trampert & Woodhouse (1995), filtered to include
only harmonic degrees 10 and lower.

travel-time
anomaly [s]

numerical -97.1
ray 1 -123.6
ray 2 -134.4
ray 3 - 90.2
harmonic -113.0

amplitude
anomaly

numerical 1.90
ray 1 0.71
ray 2 0.81
ray 3 1.17
harmonic 1.85

sum of n harmonic waves as

n∑
i=1

Ai cos(ωt+ δψi) = A cos(ωt+ δψ), (3.50)

where

A2 ≡
n∑
i=1

n∑
j=1

AiAj cos(δψi − δψj), (3.51)

tan(δψ) =

∑n
i=1 Ai sin(δψi)∑n
i=1Ai cos(δψi)

. (3.52)

Hence, the resulting phase anomaly δψ, resp. travel-time anomaly δT , and amplitude

anomaly A of ũres(θ, φ, t) as defined by eq. (3.49) can be calculated directly from the

single predictions δψi and Ai. We compare all values with the travel-time and amplitude

anomaly obtained by the numerical algorithm in Table 3.1.

We observed that the resulting, asymptotic waveform, given by eq. (3.49), was shifted

by about 17 seconds and exhibited a slightly bigger amplitude of about 5% with respect

to the numerical, ground-truth trace. Note that the discrepancy of these observed

anomalies to the analytical, harmonic values from Table 3.1 might be found in the finite

bandwidth of the single traces ũi(θ, φ, t) used for the summed waveforms of eq. (3.49),
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3.3 Benchmark of different approaches to the forward problem

Figure 3.6: Multiple ray paths for a reference case with the fourth orbit arrival in a het-
erogeneous background phase-velocity distribution (Trampert & Woodhouse
1995). All three rays solve the same ray-tracing equations from Woodhouse
& Wong (1986) leading to different phase- and amplitude-anomaly predic-
tions shown in Table 3.1.

while the analytical values are valid only for monochromatic waves. Still, the travel-

time anomaly of the resulting trace ũres(θ, φ, t) is closer to the numerical, ground-truth

prediction than the single predictions for the second and third ray, but worse than the

prediction of the first ray. It is therefore crucial to find all rays in order to properly

account for the predicted anomalies.

Our study differs with respect to the work on synthetic seismograms of a more realistic

case by Wang & Dahlen (1994, see fig. 21). We only consider the monochromatic (or

very narrowly filtered) waveform for an analytical source, instead of an integration

over a complete frequency range. Such an integration becomes more expensive as for

each frequency the corresponding, ray-theoretical phase and amplitude anomalies must

be found first. Additionally, we investigated especially a multiple ray-path example

where Wang & Dahlen (1994) only consider single ray examples. A more systematic

investigation of multi-pathing effects as done here could in principle be conducted with

the membrane-wave model (Tanimoto 1990; Tape 2003; Peter et al. 2007).
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3.4 Benchmark of different approaches to the inverse problem

To compare the performance of different tomographic methods in different scenarios, we

construct a number of independent databases of ground-truth, numerically computed

phase anomalies of 150 s Love waves. Some databases are derived from three “checker-

board” phase-velocity maps of different spatial frequency, another from the model of

Trampert & Woodhouse (1996). We experiment with the amplitude of “input” anoma-

lies, and with the realistic random noise added to the synthetics.

We invert each ground-truth dataset on a grid of approximately equal-area 3◦×3◦-sized

pixels. Linearized ray-theory and numerical sensitivity kernels (Peter et al., 2007) are

used independently to construct the corresponding matrices relating the phase-velocity

perturbations to the data. In both cases, an iterative least-squares algorithm (Paige

& Saunders 1982; implemented as in Boschi 2006) finds the phase-velocity solution to

the inverse problem, where only roughness-damping is applied; no norm-damping is in-

volved. We repeat the inversions with different roughness-damping coefficients (Boschi

2006; Boschi et al. 2006; Peter et al. 2007) and identify one preferred solution by ana-

lyzing the L-curve, where the misfit to the data is plotted versus the normalized model

roughness (as defined by Boschi 2006). Collocating the resulting inversion maps for dif-

ferent damping values, we can visualize the animated solutions for each inversion scheme

(http://www.seg2.ethz.ch/ dpeter/inversions.html). As explained by Boschi (2006) in

his section 4 and fig. 3, if different formulations of the inverse problem are applied, equal

numerical values of the damping parameter do not lead to equally regularized solutions

from the different approaches. To identify equivalently regularized solutions from ray-

theory and finite-frequency inversions, we use here the criterion of equal curvature on

the respective L-curves (Peter et al. 2007).

In the following, we compare the preferred inversion solutions found from ray theory

versus finite-frequency theory. If one accepts our definition of equivalently regularized

solutions, differences in the solution maps can be ascribed solely to the effects of different

theoretical descriptions of seismic wave propagation.

3.4.1 Data coverage

We employ the same source-station couples as in the database of Ekström et al. (1997),

updated as described by Boschi & Ekström (2002), for minor-arc Love waves at 150 s

period. For each source-station couple, we construct a synthetic measurement by cross-
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correlation between the trace obtained for a homogeneous background model, and the

trace calculated for a corresponding laterally heterogeneous input model. The number of

synthetic measurements (∼ 104) is therefore equal to the number of observations in the

real dataset at this period. Figure 3.7 shows the great-circle rays for all measurements

with the chosen source-station distribution. The data coverage defined by the number of

rays passing through each single pixel of the inversion grid coincides with that of Peter

et al. (2007, fig. 12). Regions with the highest number of ray-counts are distributed

over Asia and North America. The Southern Hemisphere in general has a relatively

poor data coverage.

Figure 3.7: The synthetic datasets use the global distribution of sources (red stars) and
stations (green triangles) taken from Ekström et al. (1997) for Love waves
at 150 second periods. They include 16′624 measurements. For each mea-
surement, the great-circle ray is plotted between the corresponding source
and station.

79



3 Resolution benchmark

3.4.2 Scalelength test

Ray theory is a high-frequency approximation. In practice, this leads to the condition

that the wavelength under consideration should be small compared to the scalelength

of heterogeneities it travels through. In order to illustrate the effect of this assumption

upon the performance of the inverse method, we can either (i) change the size of the

perturbations in the input models or (ii) consider smaller wavelengths/wave periods.

Figure 3.8 shows the results of experiment (i), comparing the inversions of synthetic

data computed in single-harmonic “checkerboard” models of different spatial frequency

(degrees). The synthetic datasets for each input model used Love waves at 150 sec-

onds period to obtain the waveform for the homogeneous and heterogeneous case.

Ray-theoretically derived solutions start differing from finite-frequency solutions for the

higher degree input models. The lengthscale of the perturbations for the chosen input

models vary in a range of ∼ 2′000 − 4′000 km, i.e. about three to six times the wave-

length under consideration. Figure 3.9 follows the idea (ii) and changes the wave period

down to 100 seconds in order to derive the synthetic datasets for the two higher degree

checkerboards of the previous example. In this case, at the highest degree model, the

lengthscale of perturbations is about four times the wavelength. Especially for regions

with good data coverage, the inversions can retrieve the input model fairly accurately.

From a comparison of Figure 3.8a with 3.8b or 3.8c, or of Figure 3.9a with 3.9b, we in-

fer that finite-frequency methods, applied to minor-arc phase-velocity data at the periods

under consideration, perform significantly better at smaller scalelengths of heterogeneity

than ray-theoretical methods. Differences between ray-theoretical and finite-frequency

solutions are small for low-degree “input” models (< 10: Figure 3.8a), but start to be-

come significant for higher degrees (≥ 13: Figure 3.8b, 3.8c, 3.9b). Considering shorter

wavelengths, this effect shifts to higher spherical harmonic degrees (compare Figure

3.8b with 3.9a). The finite-frequency solutions clearly retrieve the input structures with

higher accuracy. Differences are most prominent in regions with lower data coverage

(oceans, Southern Hemisphere), where ray theory is systematically less accurate. As a

general rule, in this ideal case without any noise in the data, finite-frequency solutions

achieve a much better datafit than ray-theoretical ones.
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Figure 3.8: Inversions for Love waves at 150 s period and input models of 2% per-
turbations and different scalelengths of heterogeneities: (a) checkerboard
defined as a single spherical harmonic of degree l = 9 and order m = 5,
(b) checkerboard with l = 13 and m = 7 and (c) checkerboard with l = 20
and m = 10. The input models are shown in the left column, solutions of
the ray-theoretical inversions in the middle and finite-frequency inversions
on the right column.

(a)

(b)

(c)
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Figure 3.9: Inversions for Love waves at 100 s period and input models of 2% pertur-
bations and different scalelengths of heterogeneities: (a) checkerboard with
spherical harmonic degree l = 13 and m = 7 and (b) checkerboard with
l = 20 and m = 10. The input models are shown in the left column, so-
lutions of the ray-theoretical inversions in the middle and finite-frequency
inversions on the right column.

(a)

(b)
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3.4.3 Noise test

The goal here is to investigate the effect of measurement errors on the tomographic

images. Adding realistic noise to a synthetic database is difficult, because there can

be sources of systematic errors, which are not known a priori, in the real databases.

Ekström et al. (1997) estimate the quality of their observations by comparing measure-

ments from pairs of nearby source-station couples. This way, they are able to derive a

Gaussian distribution of possible errors of the dataset. The standard deviation of this

Gaussian distribution is then an estimate of the accuracy of the measurement technique.

We add Gaussian random noise to the synthetic database. The standard deviation has

the same size as that found by Ekström et al. (1997) as described above, for the same

wave period. This is about 5.7 seconds in terms of travel-time shift. The error in the syn-

thetic dataset is also checked by the same searching algorithm of pairs of source-station

couples that are within a 3◦ radius from source and receiver location.

We show in Figure 3.10 the results of inverting the ground-truth database constructed

from the degree 13 (Figure3.10a) and degree 20 (Figure 3.10b) checkerboards (left pan-

els), using the ray-theory (middle panels) and finite-frequency-theory based (right pan-

els) inverse algorithms. All solutions employ a slightly higher roughness damping. In

contrast to Figures 3.8b and 3.8c, the statistical noise degrades the solutions and dimin-

ishes the differences between the two approaches in question. This is in agreement with

what suggested Sieminski et al. (2004).

Still, even in the presence of noise, our solutions from finite-frequency inversions are

somewhat closer to input models than those found from ray-theory ones. These results

are somewhat different to the ones obtained for global-scale inversions by Zhou et al.

(2005, see fig. 19). There are, however, a few important differences between their study

and ours: (i) Unlike Zhou et al. (2005), we construct the synthetic database by means of

a non-linearized numerical method, so that the accuracy of the synthetics is not hindered

by the same approximations used in the inversion, as is the case in classical checkerboard

tests conducted by Zhou et al. (2005). (ii) While Zhou et al. (2005) adds Gaussian-

distributed, random noise with an RMS-error of about 50% of the ‘structural signal’, we

apply the same kind of statistical noise but with the same standard deviation as found in

the real dataset of Ekström et al. (1997). The amplitude of noise is therefore different.

Additionally, the effects of noise strongly depend on the data coverage of the dataset,

which is different as well between the two studies. (iii) Zhou et al. (2005) calculates
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Figure 3.10: Using statistical noise in the synthetic dataset, solutions for Love waves
at 150 s period and an input model of 2% perturbations are shown: (a)
with a checkerboard with l = 13 and m = 7 and (b) with a checkerboard
with l = 20 and m = 10. The input models are shown in the left column,
solutions of the ray-theoretical inversions in the middle and finite-frequency
inversions on the right column.

(a)

(b)
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analytical sensitivity kernels based upon a far-field approximation, while our kernels are

computed strictly numerically. We also use a different coarseness of the inverse grid,

which leads to different resolution of the kernels actually used by the inverse algorithm.

As we use a slightly finer parameterization, our kernels will be represented in more detail

thus exhibiting a bigger difference to rays, which itself can be assumed to lead to bigger

differences in the inverse solutions found between the two theories.

3.4.4 Amplitude test

Both ray theory and single-scattering finite-frequency theory are linearized theories,

whose performance is contingent on the extent and amplitude of perturbations with

respect to a reference model, i.e. they fail when applied to (very) rough media. We next

explore the specific nonlinear effects of the amplitude of Earth structure heterogeneities

in an example case with amplitude perturbations as high as ±10%. The input model

pattern is a checkerboard, coinciding with the spherical harmonic function of degree 9

and order 5 as in the previous section 3.4.2. The synthetic database is then constructed

for Love waves at 150 seconds period without any statistical noise.

The solution images of the inversion of the corresponding synthetic dataset are shown

in Figure 3.11a. Comparing them with the solutions plotted in Figure 3.8a, we see that

both theories suffer from their inherent linearization. The power spectra of the ray-

theoretical solution in Figure 3.11b and of the finite-frequency solution in 3.11c reveal

both the initial the power spectrum of the 10% checkerboard input model with a strong

peak at spherical harmonic degree 9, the finite-frequency solution achieving a slightly

higher peak. Both power spectra show further aliasing of energy towards surrounding

harmonic degrees. Nonlinear effects are not only degrading the performance of both

inverse methods, they also tend to affect the stability of the solutions, so that the

inversions have to be damped more strongly than in the experiments described above.

In order to overcome these limitations, a nonlinear solution could be found iteratively,

using the solution of a previous inversion as a new starting model to reconstruct the

matrices for a new inversion. We tested this approach in the finite-frequency case,

computing all sensitivity kernels again in the new starting model (Peter et al. 2007).

Even after three iterations, the solution (not shown here) did not improve significantly.

Starting each iteration with a highly damped model (and, consequently, a relatively

poor datafit) increases the total number of iterations needed to find a sufficiently good
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result. On the other hand, starting with a rougher model like the output models of

Figure 3.11, the solution is perturbed very little at each iteration. This suggests that

the inverse scheme might be trapped at a local minimum of the misfit function.

Figure 3.11: Influence of large amplitude of heterogeneities. Solutions are shown for
Love waves at 150 s period and an input model of (a) 10% perturbations
with a checkerboard with l = 9 and m = 5. On the left, the input model
is shown, while in the middle and on the right side the ray-theoretical and
finite-frequency solutions, respectively, are plotted. The power spectrum
up to spherical harmonic degree 25 is shown of the ray-theoretical solution
image in (b) as red bars, the corresponding one of the finite-frequency
solution image in (c), both plotted against the initial power spectrum of
the input model (black box).
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3.4.5 Realistic input model test

While checkerboard maps like those of Figures 3.8 through 3.11 have an impulsive power

spectrum, with all energy at only one degree, realistic phase-velocity distributions for
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surface waves at intermediate to long periods exhibit in general a red spectrum, i.e. with

most energy at lower spherical degrees (< 8). Either because tomography cannot resolve

it, or because the Earth’s upper mantle is, indeed, a smoothly heterogeneous medium,

the high-degree portion of the spectrum is usually much weaker. We choose as starting

model the phase-velocity map originally derived from Trampert & Woodhouse (1996) for

Love waves at 150 s period. Note that this phase-velocity distribution model represents

a solution to a different number of observations with a different source-station setup

and a different parameterization of the inverse algorithm. We construct ∼ 104 synthetic

measurements with the same source-station distribution from Ekström et al. (1997)

as in the previous tests to obtain the synthetic database for the benchmark exercise

conducted here. No statistical noise is added to this synthetic database.

In Figure 3.12a, the preferred solutions of the ray-theoretical and finite-frequency

inversion methods are shown. The power spectra of both solutions are plotted against

the power spectrum of the input model in Figure 3.12b and 3.12c; the power spectrum of

the ray-theoretical inversion result is slightly overpredicting the lowest harmonic degrees

while losing energy at higher degrees (> 8). The power spectrum of the finite-frequency

solution is clearly more consistent with the input one, both at lower and at higher

degrees, while the loss of resolution with increasing harmonic degree is slower than in

the ray-theory case.

Note that both power spectra are strongly affected by the damping value chosen for

the corresponding inversion solution. Less damping favors more energy content in the

power spectrum. The strength of damping in these comparisons is therefore crucial. As

ray and finite-frequency theory lead to a different sparseness and matrix representation

in the inverse scheme, solution maps need different damping values that account for

this fact. We compare solutions based on a L-curve analysis with the criterion of equal

curvature values (Boschi 2006; Peter et al. 2007). As a result, Figure 3.12 shows a

ray-theoretical solution with a slightly larger damping coefficient than the compared

finite-frequency solution. In general, we see that the finite-frequency solutions retrieve

the initial power spectrum better than ray-theoretical solutions.

In summary, the results of our benchmark indicate that finite-frequency inverse meth-

ods should recover the phase-velocity distribution and power spectrum of the real Earth

better than ray-theory ones, particularly at high harmonic degrees. Peter et al. (2007)

inverted the phase-anomaly observations from the dataset of Ekström et al. (1997) for

Love waves at 150 s period. Ray-theoretical and finite-frequency solutions were almost
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Figure 3.12: Realistic input model TW96 solved for Love waves at 150 s period. (a)
The input model is shown on the left, the ray-theoretical inversion in the
middle and the finite-frequency inversion solution on the right. The cor-
responding power spectrum up to spherical harmonic degree 25 of (b) the
ray-theoretical solution image (red bars) and (c) the finite-frequency solu-
tion image (red bars) are plotted against the initial power spectrum of the
input model (black boxes).
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identical. In their fig. 17, the power spectrum for the finite-frequency solution reveals a

slightly higher amplitude at degrees > 8 as for the ray-theoretical solution. Our current

results imply that this difference, although small in amplitude, reflects an improvement

in the tomographic resolution of small-scale heterogeneity present in the Earth.

3.5 Conclusions

Using the asymptotic approach, we derived an analytical description of the propagation

of elastic waves on a zero-thickness membrane in terms of traveling waves, consistent

with the more general treatments of Gilbert (1976), Dahlen & Tromp (1998), and Fer-

reira (2005). We used this formulation of ray theory on a membrane in a benchmark

against the forward predictions of finite-frequency kernels (analytical and numerical: see

Peter et al. 2007), and a ground-truth database of numerical, membrane-wave synthet-

ics. Our work extends the investigations made for 3-D sensitivity kernels within 3-D

cartesian boxes (Baig et al. 2003; Baig & Dahlen 2004; Dahlen 2004; Yang & Hung

2005) to a 2-D spherical geometry. We further employed finite-frequency sensitivity ker-

nels for higher orbits. While predictions made by finite-frequency theory for first orbit

arrivals are more precise than those of exact ray theory, we found that finite-frequency

sensitivity kernels can not predict phase anomalies accurately enough for higher orbits

and even weakly heterogeneous phase-velocity models (spherical degree expansions > 4).

We also benchmarked the tomographic inverse method based on ray theory, against

the finite-frequency tomographic algorithm of Peter et al. (2007), based on the ad-

joint method. Both approaches were applied independently to invert the same synthetic

database of phase-anomaly measurements based on a realistic source/receiver distribu-

tion (Ekström et al. 1997) for global phase-velocity perturbations. The results of the

latter experiment, limited to first orbit data, indicate that finite-frequency theory per-

forms significantly better than linearized ray theory. In regions with poor data coverage,

noise in the data can strongly affect the tomographic solution. This complicates com-

parisons between ray and finite-frequency theory based on real (noisy) phase-anomaly

measurements. Nevertheless, one can expect that, in a regime of very good data cover-

age and quality, accounting for single scattering of intermediate- to long-period surface

waves will improve significantly the resolution of tomographic imaging.
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4 Surface-wave tomography: finite-frequency

shear-velocity inversions for the

European-Mediterranean region

4.1 Introduction

4.2 Data

4.3 Method

4.4 Results

4.5 Discussion

4.6 Conclusions

This chapter will be submitted to Geophys. Res. Lett., co-authors were Lapo Boschi, Frédéric De-
schamps, Bill Fry, Göran Ekström and Domenico Giardini. Footnote comments are provided only
for this thesis version.

95



4 European-Mediterranean tomography

Summary

Multiple-resolution inversions of combined global and regional seis-

mic data can improve regional tomographic models. We invert a

high-quality, global phase-anomaly database of intermediate- to long-

period Rayleigh waves, with increased coverage in the European-

Mediterranean region, on a global scale with a higher resolution param-

eterization in the region of interest. We first compare phase-velocity

inversions based on ray and finite-frequency theory and derive for each

a corresponding set of local phase-velocity dispersion curves (one per

model pixel) between 35 s to 300 s period. In order to investigate

the effects of those two different theoretical approaches on the three-

dimensional problem of imaging upper-mantle structure, we next in-

vert each dispersion curve for radial shear-velocity profiles. The combi-

nation of a gradient-descent method and a random-Monte-Carlo model

search provides an estimated shear-velocity model with associated un-

certainties for depths between 40 km to 400 km. Comparisons with

independent studies suggest that finite-frequency tomography reveals

seismic structures in more detail than ray theory, but differences be-

tween the two models are small, compared to model uncertainty.

4.1 Introduction

In view of current plans to build a European seismological reference model (Ritzwoller

et al. 2006), a new enriched high-quality surface-wave dataset was assembled, achieving

unprecedentedly dense coverage of the region (Fry et al. 2008). The dataset combines

global and regional observations, which helps to further constrain regional seismic models

(see e.g. Shapiro & Ritzwoller 2002). Tectonics in Europe and in the Mediterranean

region are governed by a complex interaction of the African, Eurasian and Arabian

plates, comprehensively investigated in several tomographic studies (Spakman et al.

1993; Wortel & Spakman 2001; Piromallo & Morelli 2003; Boschi et al. 2004; Marone

et al. 2004; Fry 2007; Schmid et al. 2008). Recent phase-velocity models of Europe
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4.2 Data

and the Mediterranean region, found using analytical finite-frequency sensitivity kernels,

show some main discrepancies to ray-theoretical ones, especially between the Southern

Apennines and the Hellenic Arc (Fry et al. 2008).

It is unclear how such differences in phase-velocity distributions reflect differences in

the underlying seismic structures1. Inversions for one-dimensional seismic depth profiles

are highly nonlinear, and their solutions are not unique (Knopoff 1972). An exploration

of the solution space more thorough than those afforded by linearized inversions becomes

therefore necessary, to identify a most likely seismic profile and estimate its uniqueness.

Focusing on the well sampled European-Mediterranean region (Fry et al. 2008), we

will use Rayleigh-wave phase-velocity maps derived either by ray or numerical finite-

frequency theory (Peter et al. 2007) to build a new set of dispersion curves which, in a

second step, are inverted for radial Vs profiles. We will then compare the corresponding

three-dimensional shear-velocity models, and draw conclusions on the different methods’

performance, based on our understanding of the region’s tectonics.

4.2 Data

The global Harvard database from Ekström et al. (1997), updated by Boschi & Ekström

(2002), was further expanded by Fry (2007) to include also regional surface-wave data.

This new high-quality dataset has a particularly good data coverage2 over Europe and

the Mediterranean region (Fry et al. 2008), providing measurements of both Love and

Rayleigh wave phase-anomalies at periods between 35 s and 300 s. In this study, we

invert measurements of Rayleigh waves3 at all given periods and epicentral distances,

and for both minor and major arcs.

1 Differences in dispersion curves could map directly into the three-dimensional models as the dis-
persion curves are to first-order a linear combination of the underlying three-dimensional velocity
structure (Trampert & Woodhouse 2001).

2 It was collected using additional data from permanent stations of the SDSNet (Baer et al. 2000)
and GRSN (Stammler & Hanka 2002), as well as temporary data stations from recent projects, like
MIDSEA (van der Lee et al. 2001) and TomoCH (Fry 2007). Epicentral distances range between 15◦

and 165◦ for minor-arc measurements. For the longest periods at 150 - 300 s, additional major-arc
measurements are also available.

3 Rayleigh waves are mostly sensitive to vertically polarized shear-velocity (Boschi & Ekström 2002).
Through the neglect of anisotropy, this will limit the number of solution parameters, confining the
model-space search, and making the approach of inverting densely sampled dispersion curves for
shear-velocity profiles in the European-Mediterranean region computationally feasible.
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4.3 Method

We invert for local phase velocities with a global multiple-resolution parameterization,

where Europe and the Mediterranean region are parameterized with blocks of approxi-

mately equal size of 1◦ x 1◦, everywhere else by 3◦ x 3◦ blocks4 (Boschi 2006). At each

period from 35 s to 300 s, we use a least-squares algorithm (Paige & Saunders 1982)

to find a phase-velocity map derived by either ray- or finite-frequency theory. For the

later, we computed sensitivity kernels entirely numerically as described by Peter et al.

(2007). Our choice of solution is based on an analysis of the L-curves, comparing for

each theory the inversion solutions corresponding to the same curvature on the L-curve

(Peter et al. 2007).

Dispersion curves derived from these phase-velocity maps are assembled for each in-

version pixel within Europe and the Mediterranean region (900 locations total). We find

for each the corresponding shear-velocities in six distinct layers (40 - 60 km, 60 - 100 km,

100 - 150 km, 150 - 220 km, 220 - 310 km and 310 - 400 km). We use Knopoff’s method5

(Knopoff 1964; Schwab & Knopoff 1970) to calculate a synthetic dispersion curve for

each seismic profile generated by our search algorithm, starting with a seismic profile

combining PREM (Dziewonski & Anderson 1981) upper mantle and crustal seismic ve-

locities from Crust-2.0 (Bassin et al. 2000) together with the more accurate estimates

of ocean and Moho depths of the European crustal model EuCrust-07 (Tesauro et al.

2008) (averaged over each 1◦ x 1◦ pixel). We iteratively improve each starting model

by a gradient-descent inversion (Tarantola 2005) for Vs averaged over the six distinct

layers. In a Monte-Carlo approach, we next generate ∼ 105 radial profiles by randomly

perturbing at each layer the values of Vs up to 10%, while keeping density and P-velocity

fixed (Deschamps et al. 2008).

Our cost function χ2, accounting for the observational error σj (estimated by Ekström

et al. 1997) at each period Tj and for the difference between “observed” cobs(Tj) and

4 This reflects a trade-off choice between the number of free parameters and the desired high-resolution
for the study region. The global inversion avoids artificial mapping of perturbations into our focus
area.

5 Knopoff’s method is computationally very efficient and supplies the phase-velocities at each con-
sidered period, making our approach of using a combination of a gradient-descent method and a
random-Monte-Carlo search (Deschamps et al. 2008) feasible. We were thus capable to find three-
dimensional shear-velocity models together with estimated standard deviations of the whole study
region for both ray- and finite-frequency-theory-derived dispersion curves.
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computed c(Tj) phase-velocity, is defined as:

χ2 =
∑
j

[cobs (Tj)− c (Tj)]
2

σ2
j

+ η
∑
j

[c′obs (Tj)− c′ (Tj)]2

σ2
j

,

where ′ denotes derivation with respect to period and η acts as a weighting parameter for

the second term (similar to fitting group velocities). We attribute to all solution profiles,

for which the phase-velocities lie within one standard deviation of the observational

error, a probability p that depends on the corresponding χ2 value:

p = k e−
χ2

2

where k is a normalization constant. Our final, preferred profile6 coincides with the

weighted (with weight p) average of all those profiles, accompanied by the corresponding

standard deviations (Deschamps et al. 2008).

4.4 Results

Figure 4.1 shows examples of our phase-velocity maps at four different periods (40 s,

75 s, 150 s and 250 s) with a possibly important difference between ray- and finite-

frequency-theory-derived maps visible at 150 s. A distinct fast anomaly is mapped by

finite-frequency between the Southern Apennines and the Hellenic Arc, while from ray-

theory it appears to follow the Dinarides. We also see that the differences between the

two theoretical approaches become stronger for maps derived at longer surface-wave

periods7.

Although the sensitivity of Rayleigh waves at the shortest period we consider (35 s) has

highest sensitivity mostly below the Moho (Boschi & Ekström 2002), their sensitivity

to the crust is still considerable. We constructed an artificial Vs profile with crustal

6 We also experimented with other approaches to find a best depth profile: (i) using genetic algorithms
(like e.g. Zivcic et al. 2000) and (ii) combining genetic algorithms with gradient-descent methods.
After several synthetic tests, we found that approach (i) suffers from the strong non-uniqueness of
the problem, i.e. a vast number of best models found by the algorithm explained the data equally
well, while gradients for each layer computed in approach (ii) were penalized by the strong non-
linearity of the problem, i.e. the model parameters depend strongly on each other (Panza et al.
2007).

7 This is a coherent result, as for shorter periods the numerical sensitivity kernels are increasingly
close to the corresponding, simple ray-theory paths (Boschi 2006).
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Figure 4.1: Phase-velocity maps obtained from inversions based on numerical finite-
frequency and ray theory of Rayleigh-wave phase-anomaly measurements at
40 s, 75 s, 150 s and 250 s of the new composite dataset of Fry et al. (2008).

dc/c (%)

finite-frequency

ray

R 40 s R 75 s R 150 s R 250 s

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6

layers from Crust-2.0 and EuCrust-07 but some artificial upper mantle, and computed a

corresponding ”synthetic” dispersion curve by Knopoff’s method. We then inverted this

synthetic dispersion curve with starting profiles different from the “input” model. Figure

4.2a illustrates results of two such tests, with crustal structure fixed in the inversion,

either to PREM crust or to our crustal model based on Crust-2.0 and EuCrust-07, used

to generate the synthetics. It is clear that (i) even if the starting model for the inversion

is very wrong (gray dashed line) the input model can be retrieved properly, but (ii)

only if the crustal model is reliable. In the absence of a “good” crustal model, retrieved

upper-mantle structure is wrong down to ∼ 200 km depth.

The three-dimensional models derived by ray and finite-frequency theory exhibit dif-

ferences under Southern Italy and the Hellenic arc at depths between 150 - 400 km.

Figure 4.2b shows one of the Vs profiles from the “observed” dispersion curves derived

by finite-frequency or ray theory for a location in Southern Italy (41.5◦N, 16.5◦E). In

both cases, crustal structure is everywhere fixed to our crustal model, based on Crust-

2.0 and EuCrust-07. Between 60 km and 100 km, both models show a positive anomaly,
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4.4 Results

Figure 4.2: Local shear-velocity profiles and their standard deviations (shaded areas).
(a) “Synthetic” inversions of a dispersion curve computed from an “input”
profile (black line), which is far from the starting upper-mantle profile (gray
dashed). Output profiles are obtained fixing crustal structure of the starting
profile to either PREM (red) or the crustal model used as input (blue). (b)
Inverted dispersion curves obtained from finite-frequency (green) and ray-
theory (blue) maps (Figure 4.1) for a location in Southern Italy, starting
from PREM and crustal structure fixed to a Crust-2.0- and EuCrust-07-
based model.
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4 European-Mediterranean tomography

Figure 4.3: Vs perturbations (dVs) with respect to PREM at 40-60 km, 60-100 km, 100-
150 km, 150-220 km, 220-310 km and 310-400 km depths based either on
finite-frequency (left) or ray-theoretically (right) derived dispersion curves.
The standard deviations (STD) of the corresponding shear-velocity anoma-
lies are given to the left of the models.
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which at 100 - 150 km changes to a low-velocity layer. The inversion of the finite-

frequency dispersion curve shows higher anomalies at depths between 150 - 310 km.

Figure 4.3 and Figure 4.4 combine all the Vs perturbations (and their standard devia-

tions) found as described. Standard deviations grow with depth and can range up to

6%, which indicates a decrease of the resolving power in the dispersion curves8.

4.5 Discussion

Our Rayleigh-wave phase-velocity maps, derived either ray-theoretically or using nu-

merical finite-frequency sensitivity kernels, confirm the same important differences9 as

8 The improvement in resolution possibly achieved by finite-frequency theory in the first step (phase-
velocity maps) might be partly lost, when we attempt to constrain a higher number of free param-
eters to derive a three-dimensional map.

9 Especially the fast phase-velocity anomaly related to the subduction zone in Southern Greece, is
shifted in the finite-frequency inversions towards the Apennines while in ray-theoretically derived
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4.5 Discussion

Figure 4.4: Perspective view of four different cross-sections through the finite-frequency
shear-velocity model of Figure 4.3.

pointed out by Fry et al. (2008). We additionally find that the crustal structure plays

an important role in the correct determination of the uppermost ∼ 200 km of the radial

Vs profiles10. Including shorter surface-wave periods from noise correlations could allow

to extend our model search and invert simultaneously for crustal layer parameters (Yao

et al. 2007; Panza et al. 2007). In both Vs-models (Figure 4.3) we see the slow anomaly

solutions, this anomaly follows the Balkan coastline. In both cases, the extend of this fast anomaly
is smaller and more focussed than in the inversions of Fry et al. (2008), which might result from our
numerical finite-frequency approach and the include of major-arc measurements at longer periods
(150 s to 300 s).

10 The inversions of synthetic dispersion curves reveal the difficulty of constraining the velocity layers
of the upper mantle by such a method. As already pointed out by Pontevivo & Thybo (2006) and
van Heijst et al. (1994), it becomes important to find additional constraints.

The crustal description applied in these inversions should be as accurate as possible in order to
correctly identify the seismic velocity profile in the uppermost mantle. This seems to confirm the
general importance of crustal corrections in the determination of upper mantle structures (Tesauro
et al. 2008; Bozdag & Trampert 2008).
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in the western Mediterranean, associated with the tectonic extension of this area, the

fast anomaly associated with subduction at the Hellenic Arc, and the slow anomaly

under the Aegean sea and the Carpathian mountains, also found by Boschi et al. (2004)

and Marone et al. (2004). At shallower depths, our models show a strong, high-velocity

anomaly under the Hellenic Arc at 60 - 150 km depths. Although this general feature

is related to the Dinarides-Hellenides subduction (Panza et al. 2007), the dipping angle

can only be poorly resolved in our inversions11. At 220 - 310 km depth, a high Vs-

anomaly stretching along the Southern Apennines up to Northern Italy is identified in

the finite-frequency inversion, while in the ray-theoretical model this anomaly seems to

be shifted eastwards under the Adriatic sea.

With respect to the ray-theory solution, the finite-frequency one is more coherent

with Vp structure found in a tectonic reconstruction of the temperature field (de Jonge

et al. 1994). For example, compare Figure 4.3 (layer at 220 - 310 km) with fig. 6

of Boschi et al. (2004). Additionally, in the same depth range, a fast anomaly under

the Central Alps, also found by Schmid et al. (2008), is reproduced more clearly in

our finite-frequency model than in the ray-theoretical one. Compare, in particular, our

Tunisia-Central Europe cross-section of Figure 4.4 with fig. 8 of Boschi et al. (2004).

These are indications that our finite-frequency method achieves higher resolution than

ray theory. Still, standard deviations in these depth ranges are between 2% and 5%,

obscuring model differences12.

4.6 Conclusions

We inverted a new, high-quality phase-anomaly database of intermediate to long-period

Rayleigh waves, confirming (at 150 s period) the presence of a distinct low-phase-velocity

zone between Southern Italy and the Hellenic Trench in finite-frequency inversions,

which is shifted to the Balkan coastline for ray-theoretical inversions (Fry et al. 2008).

We constructed three-dimensional shear-velocity models by inverting dispersion curves,

found at each location in the European-Mediterranean region, from the previously ob-

tained phase-velocity maps derived by ray- and finite-frequency theory. Despite differ-

ences in these maps, the inverted depth profiles (assembled to form a three-dimensional

11 Boschi et al. (2004) find a sharp vertical feature (see their cross-section in fig. 7), although their
model is much smoother.

12 In general, we confirm that uncertainties in finite-frequency and ray-theoretical models make it
difficult to discriminate between them (Boschi et al. 2006; Trampert & Spetzler 2006).
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4.6 Conclusions

model in Figure 4.3 and Figure 4.4) show only little variation between the results of the

two approaches. An improved coherence between tectonic reconstructions (de Jonge et

al. 1994) and our finite-frequency model suggests that finite-frequency tomography can

reveal Earth structure in more detail than ray-theory, but standard deviations, i.e. error

bars on tomographic results, are large enough that differences between the two models

cannot be considered statistically significant. Better constrained dispersion curves and

refined models of the crust should allow to reduce the error bar, and eventually quantify

the improvement achieved via a finite-frequency approach.
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5 Conclusions

This thesis first describes a simplified model of surface wave propagation, that I de-

signed for the purpose of determining the sensitivity of phase-anomaly measurements

to perturbations in phase velocity. The “membrane wave model” turns out to be very

effective in terms of computational costs. The adjoint method additionally allows to

calculate sensitivities for a heterogeneous reference Earth, an effort too expensive for

analytical descriptions. By employing the combination of this membrane wave model

and the adjoint method, it has been feasible for the first time in global seismology to

iteratively invert for phase-velocity distributions using a finite-frequency approach on

a completely numerical basis. I have also been able to validate the adjoint method by

comparison with the result of a very large, “brute force” set of forward simulations.

The second part of this thesis shows the complex implications of different theoreti-

cal descriptions of seismic wave propagation upon the inverse problem of determining

an a priori Earth’s structure. I quantify the resolution limits of ray theory versus

finite-frequency theory for both the forward and the inverse problem, finding tomo-

graphic resolution to be improved in the finite-frequency with respect to the ray-theory

approach. Utilizing the membrane wave model to construct a large synthetic phase-

anomaly dataset for a given “input” Earth model, I have verified the better performance

of the finite-frequency checkerboard tests. Such synthetic benchmarks are in general very

expensive to conduct in a three-dimensional case, and too expensive for a comparable

size of measurements as are available in current global tomographic databases, but the

membrane wave approach makes them computationally feasible. For very heterogeneous

input models, I verified that the input model can still be retrieved, provided that the

inversion procedure is iterated a few times. This requires that sensitivity kernels be

recalculated and the high performance of the adjoint method employed here is, again,

essential.

The last part of this thesis shows an application of the numerical finite-frequency ap-

proach to determine a new, three-dimensional shear-velocity model for Europe and the

Mediterranean region. By employing the membrane wave model, it has been possible
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to calculate a sensitivity kernel for each measurement at every available period of an

unprecedentedly rich, high-quality surface-wave phase-anomaly dataset. A completely

numerical, finite-frequency procedure led to a high-resolution dataset of Rayleigh-wave

dispersion curves, densely covering the focus area. In a second step, a Monte-Carlo

search algorithm exhaustively explored the complete model space of upper-mantle pro-

files down to 400 km. The associated model uncertainty was also determined to supply

reliability limits of the found shear-velocity structures. Comparisons with independent

studies suggest that the finite-frequency approach achieves an improvement with re-

spect to the ray-theoretical one, but uncertainties in the dispersion curves make both

approaches statistically equivalent.

As computational power increases, the work done here indicates strategies that will

allow to solve the Earth’s equations of motion in unprecedented detail. An outlook of

such future computational developments is given in the appendix. A promising approach

for global seismology seems to be an exploration of the adjoint method in order to

derive three-dimensional models based on finite-frequency theory, making it possible to

derive higher-resolution images by completely numerical approaches. Through constant

efforts, the size of databases in global seismology will continuously be increased. Parallel

efforts to augment the number of seismic stations, and the density of station coverage

at the local, regional and global scale will allow to reveal more and more details in

Earth’s structure. Future tomographic methods should not only rely on data coverage

improvements, but also try to extract from new databases as much information as

possible, to more robustly constrain the inverse problem in global seismology. A more

accurate, albeit computationally challenging, description of seismic wave propagation

will help to solve this inverse problem. The work done here motivates to go into such

a computational direction, showing that numerical finite-frequency tomography is a

rewarding application to global seismology.
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A Petascale Computing for Future Breakthroughs in

Global Seismology

A.1 Introduction

A.2 Limiting factors of tomographic resolution

A.3 Statistically sound, linearized ray-theory tomography

A.4 Numerical finite-frequency tomography

A.4.1 Implementation and computational cost

A.5 Summary

Abstract

Will the advent of “petascale” computers be relevant to research in

global seismic tomography? We illustrate here in detail two possible

consequences of the expected leap in computing capability. First, be-

ing able to identify larger sets of differently regularized/parameterized

solutions in shorter times will allow to evaluate their relative quality

by more accurate statistical criteria than in the past. Second, it will

become possible to compile large databases of sensitivity kernels, and

update them efficiently in a non-linear inversion while iterating to-

wards an optimal solution. We quantify the expected computational

cost of the above endeavors, as a function of model resolution, and of

the highest considered seismic-wave frequency.

As a co-author, I provide this appendix published in Phys. Earth planet. Inter., 2007, and written
by Lapo Boschi, for completeness. Further co-authors were Jean-Paul Ampuero, Martin Mai, Gaia
Soldati and Domenico Giardini.
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A.1 Introduction

In the past decade there have been a number of claims by tomographers that lead to a

re-consideration of certain aspects of the theory of the Earth. Those claims have been

justified by improvements in tomographic resolution. van der Hilst et al. (1997), for

example, inverted a very large database on an unprecedentedly dense voxel grid, making

use of an inversion algorithm that exploited the inherent sparsity of the linear inverse

problem. They found very sharp images of fast, deep heterogeneities, that, because of

their geographic distribution, were explained in terms of subducted material, sinking

into the lower mantle. This finding, while subject of debate (is “resolution” really as

high as claimed?), has been a strong argument in favour of whole-mantle vs. layered

convection. More recent examples are the work of Ishii & Dziewonski (2003), who

mapped an “innermost inner core” of only 300 km in radius, suggesting that it be ”the

oldest fossil left from the formation of Earth”, and the controversial article of Montelli et

al. (2004), who improved global resolution by means of a more accurate approach to the

calculation of sensitivity functions, and found “clear evidence that a limited number of

hotspots are fed by plumes originating in the lower mantle”; this claim is clearly relevant

to the current debate on the nature of mantle plumes (e.g., Sleep 2006), involving all

disciplines in the Earth sciences, and stirred a very animated debate.

The controversy originated by these publications, and, in general, the lack of cor-

relation at short spatial wavelengths between tomographic images derived in different

approaches (e.g., Becker & Boschi, 2002) indicate that the next important challenge in

global seismic tomography is that of finding effective ways to improve the images’ resolu-

tion. We describe in the following the role that high-performance computing might play,

in reference to developments in tomographic imaging and the subsequent interpretation

of mapped Earth structure.

A.2 Limiting factors of tomographic resolution

Tomographic resolution, or the smallest lateral extent of a velocity anomaly that can be

correctly mapped by an inversion algorithm, is limited by (i) the geographic coverage of

inverted seismic observations, (ii) the resolving power of the selected parameterization,

(iii) the accuracy of the theoretical formulation, or the equation relating seismic data

to the velocity field. The latter problem has been explored, for example, in the recent
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A.2 Limiting factors of tomographic resolution

Figure A.1: P-velocity model vox1.5p, shown in its entirety. The mean depth of each
layer is given below and to the left of the corresponding panel. vox1.5p was
derived from Antolik et al.’s (2001)database of P-wave travel times.

works of Montelli et al. (2004, 2006), Boschi et al. (2006), and Boschi (2006), and while

differences between ray-theory and finite-frequency models exist, they do not seem to

be as important as those caused, at this stage, by (i) or (ii). (i) has been a major

limiting factor in the past: the density of the parameterization is proportional to the

number of basis functions (i.e. number of model coefficients, or ”free parameters”)

used to describe the tomographic image, which in turn defines the size of the inverse

problem to be solved. Pioneers of global seismic tomography like Dziewonski (1984)

or Woodhouse & Dziewonski (1984), even using what at the time were regarded as

very powerful computers, could only afford a model parameterization in terms of ∼ 102

free parameters. The mid-90s breakthroughs of Grand (1994) and van der Hilst et al.

(1997) consisted in employing a voxel parameterization (as opposed to the harmonic

one of Dziewonski (1984) and Woodhouse & Dziewonski (1984)), resulting in a sparse

inverse problem, solvable by iterative algorithms–hence, lower RAM and computation

time requirements (e.g. Trefethen & Bau, 1997), allowing to invert for ∼ 105 model
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coefficients. A decade later, this issue is not as relevant anymore. Owing to an adaptive-

grid approach, Bijwaard et al. (1998) have been able to make use of a parameterization

locally as fine as 0.6◦, while keeping the total number of free parameters relatively

low. More recently, model vox1.5p of Boschi et al. (2007) (figure A.1) based on an

approximately equal-volume grid, achieves instead a constant nominal resolution of 1.5◦.

It consists of 366,640 free parameters, and yet one inversion requires only minutes on a

1-CPU desktop computer.

We infer that at the current stage of global seismic tomography, the main factor

limiting resolution is data coverage, which, without a large network of ocean-bottom

receivers, will remain poor in regions underlying oceans. In the absence of uniform

station coverage, the main challenge for seismic tomographers is to establish appropriate

parameterization/regularization criteria, to damp instabilities caused by lack of data,

without obscuring valuable information.

A.3 Statistically sound, linearized ray-theory tomography

Establishing a criterion to identify the highest-likelihood model in a family of solutions

that would intuitively be considered “acceptable” has been a major problem–and limit-

ing factor for resolution–in global seismic tomography, with the choice of a “best” model

left to the author’s subjective consideration.

Since the seminal work of Akaike (1974), rigorous “information criteria” have been

derived (e.g., Burnham & Anderson 2002; Hurvich & Tsai 1989; Leonard & Tsu 1999)

to determine the actual number of free parameters needed to explain a given seismic

database; they have not been applied often to global seismic tomography, probably be-

cause of their high computational cost. They require that many inversions be performed

on grids of various density (nominal resolution); the “number of degrees of freedom” as-

sociated with each inversion must also be found, evaluating the model resolution matrix

R and its trace (Boschi et al. 2006). This is the most time-consuming step, but can be

perfectly parallelized as explained e.g. by Soldati et al. (2007).

We have experimented with Antolik et al.’s (2001) database of P -wave travel-time

observations, inverting them for isotropic, 3-D structure in mantle P -velocity. The CPU-

time needed to conduct a family of such inversions, spanning a broad range of solution-

model complexity values, is shown in figure A.2 as a function of parameterization density.

The CPU-time for one inversion at the highest resolution considered here (∼ 105 voxels
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of 1.5◦ horizontal extent) is ∼ 102s in the “acceptable”-solution region, and to find R we

must complete ∼ 105 such inversions, resulting in a total single-CPU time of ∼ 107s, or,

from our benchmark of the CPU on which the exercise was conducted (speed ∼ 1× 109

Flop per second), ∼ 10Petaflop. Two such computations will need to be performed.

Figure A.2: At each parameterization level (horizontal axis, from 15◦ to 1.5◦ nominal
resolution; 15 layers) we conduct 27 LSQR inversions, each with a different
regularization parameter. The time needed to complete this exercise is plot-
ted on the vertical axis. We find 27 solutions of variable roughness, ranging
between the strongly underdamped and strongly overdamped regions.

We applied AICC, or Akaike corrected information criterion (Hurvich & Tsai 1989;

Dal Forno et al. 2005) to the mentioned, global mantle P -velocity inverse problem. The

densest grid we employed has 3.75◦ horizontal spacing, while the vertical parameteriza-

tion remains constant (15, ∼ 200km-thick layers). Calculations of R were conducted on

a 20-CPU Linux cluster. Results shown in figure A.3 indicate that the information con-

tent of both weakly and strongly regularized solutions continues to grow with growing

number of degrees of freedom. To find the curve’s maximum, the exercise needs to be

iterated on even denser grids, requiring in practice (as one could estimate from figure

A.2) petascale capacities.
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Figure A.3: Corrected Akaike-criterion likelihood as a function of the trace of the reso-
lution matrix. The latter is a measure of the number of degrees of freedom
of the solution. We change it by leaving the regularization constraints fixed,
but varying the parameterization density (15 vertical layers with decreasing
15◦, 10◦, 7.5◦, 6◦, 5◦ and 3.75◦ horizontal gridsize). The solid line corre-
sponds to strongly damped, but acceptable solutions; the dashed to weakly
damped but acceptable.

AICC is a subjective choice, and we plan to explore other information criteria, the

most popular alternative to AICC being perhaps the Bayesian information criterion,

employed for example by Oda & Shibuya (1996), or Sambridge (2006).

A.4 Numerical finite-frequency tomography

An increasing number of authors in global seismology are beginning to use finite-

frequency sensitivity kernels rather than simple ray theory to develop higher-resolution

tomographic images of the Earth’s mantle, inverting seismic observations made at rel-

atively long periods, where finite-frequency effects might be more relevant and affect

tomographic resolution strongly (Boschi (2006) for a list of more or less recent works

in global finite-frequency tomography). High-performance computers allow to compute

sensitivity kernels numerically, by means of the adjoint method (Tromp et al. 2005;

Peter et al. 2007) and/or the scattering integral method (Chen et al. 2006). As op-
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posed to the analytical approach (e.g. Dahlen et al. 2000), numerical methods are more

flexible with respect to changes in the reference model, whose lateral heterogeneities will

be properly accounted for.

An example of the effects of lateral heterogeneities on sensitivity kernels is shown in

figure A.4, where the finite-element “membrane wave” approach (Tanimoto 1990; Tape

2003; Peter et al. 2007; Tape et al., 2007) is used to compute the sensitivity of Love-wave

phase anomalies to phase velocity at a period of 150s. Differences between spherical- and

aspherical-Earth kernels are small, but comparable to the kernels themselves; while not

affecting the long-wavelength character of our global tomographic images, they become

increasingly relevant as features of shorter wavelength are to be resolved (Peter et al.

2007).

Figure A.4: Example of numerical kernels (dimensionless) derived with the adjoint
method for 150 s Love waves in (a) homogeneous and (b) heterogeneous
starting phase-velocity models. (c) Difference between (a) and (b). (From
Peter et al. 2007.)

(a) (b) (c)

A.4.1 Implementation and computational cost

The computation of sensitivity kernels is by far the most expensive step of any finite-

frequency tomography algorithm. There exists one kernel per source-receiver couple, i.e.

one kernel per observation, and in principle the adjoint method requires that two simu-

lations be conducted to compute each kernel. However, the total number of simulations

to compute all kernels associated with a given database can be reduced in various ways

(e.g., Capdeville et al. 2005; Tromp et al. 2006). Most recently, Chen et al. (2006)
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Figure A.5: Expected cost of one global spectral-element simulation of waves propagat-
ing from a source to its antipode, as a function of the shortest (and most
expensive) accurately modeled period. We chose accuracy, defined as ar-
rival time error normalized by total travel time, to be ∼ 10−4. (Based on
Ampuero & Nissen-Meyer 2007.)

show that this number can be reduced to 3nR + nS, where nR denotes the number of

(3-component) receivers, and nS the number of sources.

Today, the most widely used, and possibly most efficient algorithm for numerical

simulations of global seismic wave propagation is the spectral-element software package

Specfem (e.g., Komatitsch et al. 2002). Ampuero & Nissen-Meyer (2007) show that

the cost of one run ofSpecfem is related to the shortest (most expensive) period to be

accurately modeled, Tmin, by

cost in Flop =

(
2π∆

c0Tmin

)4

× Γ, (A.1)

where ∆ denotes epicentral distance and c0 reference (mean) phase velocity, and the

parameter Γ depends on the largest tolerated error, which we define as arrival time

error normalized by total travel time. Choosing the latter to be ∼ 10−4, the curve in

figure A.5 is found.

If only minor-arc phase-anomaly observations are considered, then ∆ ≤ 180◦, and with
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Tmin = 20s (Qin et al. 2006) (hence the cost of one simulation ∼ 107Gigaflop from figure

A.5) and nR ∼ nS ∼ 102, we can expect the cost of computing all necessary kernels to be

∼ 103 Petaflop. This figure does not include the cost of input/output operations (which

might become necessary as the shortest modeled period is diminished, parameterization

refined, and RAM subsequently becomes insufficient), or reconstruction of the forward

wavefield by solving the wave equation backwards in time (Tromp et al., 2005; Chen

et al., 2006). In our preliminary runs of Specfem on a 20-CPU cluster, we have found

the backpropagation of the adjoint wavefield to take roughly as long as three normal

forward propagations with the same source-receiver geometry.

Sensitivity kernels also need to be updated a few times, repeating each time the same

number of Specfem runs, and taking the result of each inversion as the starting point

for the next, until convergence is reached.

Specfem has been shown to perform and scale extremely well (Komatitsch et al., 2003).

Additionally, once an optimal number of processors per simulation has been found, the

computation can be further parallelized by performing a number of simulations at the

same time, each on a different chunk of the cluster (recall that 3nR + nS simulations

have to be performed at each iteration).

A.5 Summary

Improving the resolution of tomographic maps is crucial to answer important questions

on the nature of the Earth’s mantle–the best current example being perhaps the debate

on the origin of hotspots and on the very existence of mantle plumes (e.g., Sleep 2006),

presumed narrow features that need high-resolution tomography to be properly mapped.

The RAM and speed of computers available to the scientific community are now suf-

ficient to solve very large inverse problems in a short time, making it easy to derive very

finely parameterized seismic images of the Earth. Nevertheless, as tomographers strive

to enhance resolution, questions that still need to be addressed are (i) how to identify

appropriate parameterization and/or regularization schemes, and (ii) how to surpass

the resolution limit implicitly posed by the ray-theory approximation, still adopted by

many researchers today.

We propose here to tackle (i) by means of computationally expensive statistical ap-

proaches like the Akaike criterion (Akaike 1974; Hurvich & Tsai 1989), now made feasible

by the advent of petascale computing. We indicate the numerical approach to finite-
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frequency (Born-approximation) tomography as the best currently available answer to

(ii), and analyze its cost as a function of increasing modeled/inverted seismic-wave fre-

quency. The availability of petascale hardware will be integral to the implementation

of numerical finite-frequency tomography at increasingly high resolution.
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